Benchmarking Driving Efficiency using Data Science Techniques applied on Large-Scale Smartphone Data

Dimitris Tselentis

Civil - Transportation Engineer Ph.D. Candidate – Researcher

> www.nrso.ntua.gr/dtsel/ dtsel@central.ntua.gr

Scope

- **Methodological approach** for driving safety efficiency benchmarking:
 - trip
 - driver
 - multi-criteria analysis

- Safety efficiency index

- travel characteristics
- driving behaviour metrics
- smartphone devices

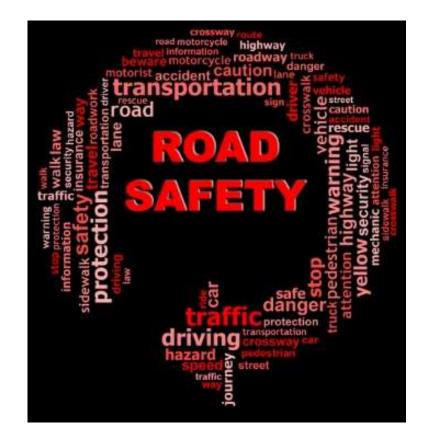
- Smartphone devices

- large-scale data
- naturalistic driving conditions

Dimitris Tselentis: Benchmarking Driving Efficiency using Data Science Techniques applied on Large-Scale Smartphone Data

Research questions

- How well can driving safety **efficiency** be **benchmarked**? Can data science techniques and large-scale data provide sufficient answers?
- What are the **temporal evolution** characteristics of driving efficiency? What do the drivers' groups formed represent?
- What is the required amount of **driving data** that should be collected for each driver?
- How can the **least efficient** trips of a database be identified?



- Methods for measuring **safety efficiency** in transportation
 - low number of parameters
 - correlation between factors
 - quantify overall driving efficiency
 - multi-criteria analysis

- Linear programming for efficiency measurement

- Data Envelopment Analysis (DEA)
 - Banks, Companies, Hospitals, Staff etc.
 - Transport (Systems, Traffic safety etc.)
- Driving behaviour research

State-of-the-art (2/4)

- Elimination of limiting barriers existed so far

- Mobile phone technology
- High cost of
 - in-vehicle data recording systems (e.g. OBD)
 - data plans
 - cloud computing
- Low penetration rate of smartphones
- Inability to manage and exploit Big Data

- Current technological advances

- collect and exploit data through mobile phones
- easier and more accurately

State-of-the-art (3/4)

- Driving data collection

- Naturalistic driving experiments
- Driving simulator experiments
- In-depth accident investigation

- Driving metrics - Adequate amount

- assessment of each driver
- deficient amount of data => uncertain or unreasonable results
- excessive amount of data => significantly increase
 required processing time

State-of-the-art (4/4)

- UBI schemes
 - Pay-As-You-Drive (PAYD)
 - Pay-How-You-Drive (PHYD)
 - Pay-at-the-pump (PATP)
- Travel behaviour characteristics
 - Total distance
 - Road network type
 - Risky hours driving
 - Trip frequency
 - Vehicle type
 - Weather conditions
- **Driving** behaviour characteristics
 - Speeding
 - Harsh braking/ acceleration/ cornering
 - Seatbelt use
 - Mobile phone use

Knowledge gap (1/2)

- Benchmarking driving safety efficiency

- microscopic driving data
- travel and driving behaviour
- Large-scale data from naturalistic driving experiments
- Human factors recorded from smartphone
 - Harsh acceleration/ braking events
 - Time of mobile usage
 - Time of driving over the speed limits

Knowledge gap (2/2)

- Amount of driving data to be recorded

- Usage-based insurance (UBI) schemes
 - travel and driving behaviour
 - reduce annual mileage
 - improve their driving behaviour

- Risk factor

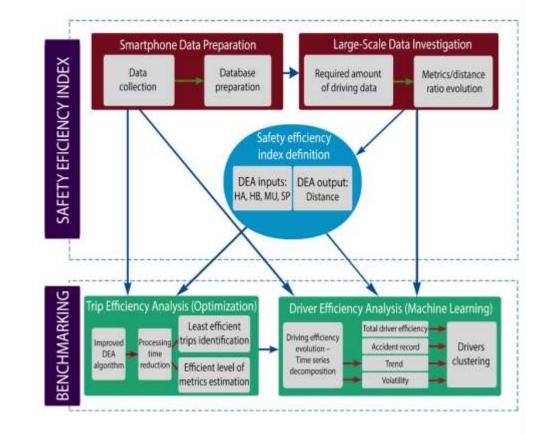
- risk's increase rate
- driving behaviour
- mileage

Methodological approach

- Smartphone data collection

- data preparation

- Large-scale data investigation


- investigation of metrics-distance ratio evolution

- adequate driving data

- Safety efficiency index estimation
- Trip efficiency analysis
 - identification of the least efficient trips
 - estimation of the efficient level of metrics

- Driver efficiency analysis

- time-series decomposition
- drivers clustering

Data envelopment analysis (1/2)

- Optimization technique

- Performance measurement using **DEA**
 - Companies, banks, hospitals, staff etc.

- Significant computation cost

- Exact solution
- Reduced Basis Entry
- Convex Hull
- Reduce processing time

- **Decision-Making-Unit** (DMU)

- Factory, company etc.
- Trips, drivers
 - variables are continuous and quantitative
 - a driver should reduce the frequency of his driving characteristics for a given mileage

Data envelopment analysis (2/2)

- Efficiency index Driving_efficiency_B
- Input-oriented DEA
 - minimize inputs (number of HA, HB events etc.) per driving distance

- Constant-returns-to-scale (CRS) problem

- the sum of all inputs changes proportionally to the sum of driving output (distance)

- Efficient level of driving characteristics for

- a trip/ driver
 - inputs
 - outputs

 $min(Driving_Efficiency_B)$

Subject to the following constraints:

Driving_Efficiency_B * $x_o - X * \lambda \ge 0$

 $Y * \lambda \ge y_o$

 $\lambda_i \geq 0 \forall \lambda_i \in \lambda$

$$Metric_i = \sum_{j=1}^m \lambda_j * Metric_j$$

 $dis \tan ce_{urban} = dis \tan ce_i / \text{Driving}_\text{Efficiency}_i$

Efficiency index parameters

Risk exposure indicators:

- Total distance travelled

Driving behaviour indicators:

- Harsh events

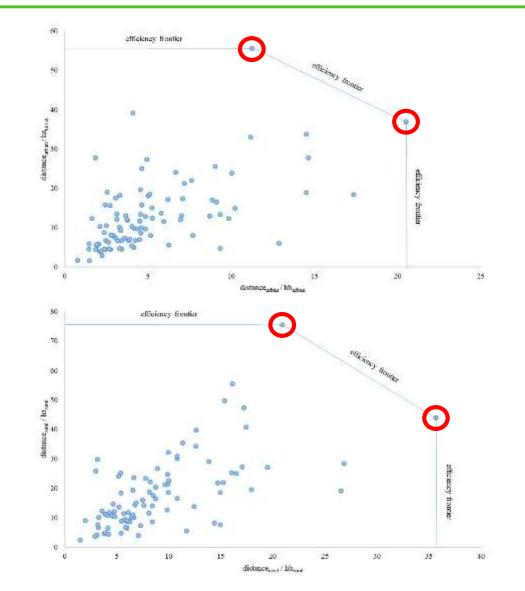

- Number of harsh braking (longitudinal acceleration) (HA)
- Number of harsh acceleration (longitudinal acceleration) (HB)

- Speeding (SP)

- seconds driving over the speed limit
- Mobile phone use distraction (MU)
 seconds using the mobile phone

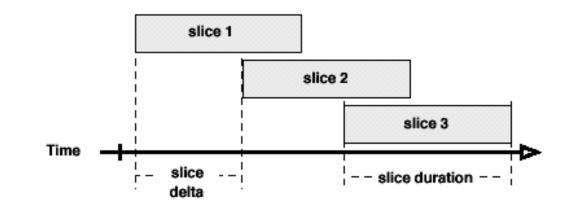
Road types:

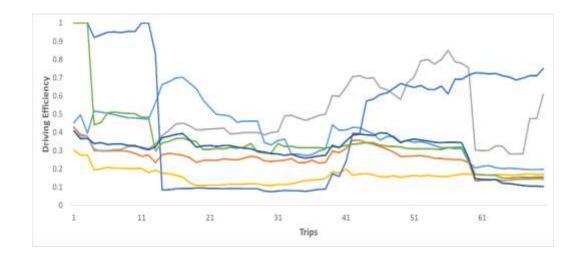
- Urban road network (signalized or not network, speed limit \leq 50 km/h)
- Urban express road network (speed limit 50 90 km/h)
- Highways (speed limit \geq 90 km/h)


Driving efficiency analysis using DEA

- DEA results 2-D illustration

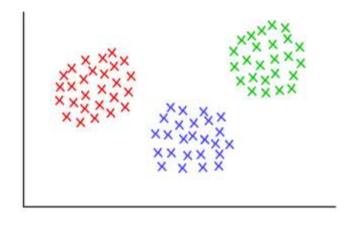
- Urban
- Rural

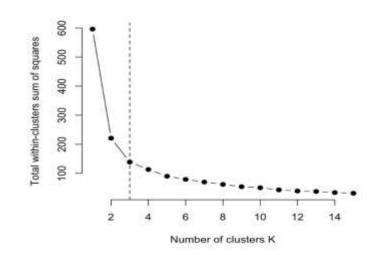

- DEA inputs


- Number of harsh acceleration events
- Number of harsh braking events
- DEA outputs
 - Trip distance

Temporal evolution of efficiency

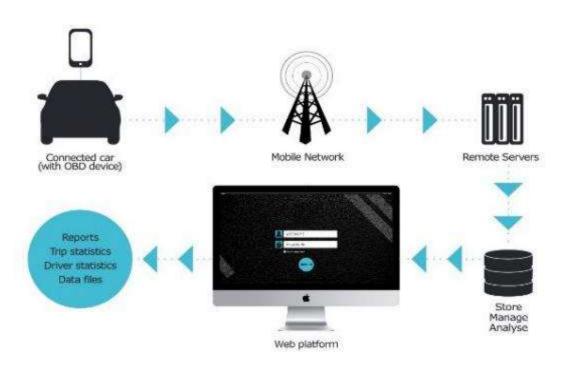
- **Aggregated** driving efficiency **benchmarking**
- Driving efficiency **benchmarking** in a **sliding window**
 - Driving behaviour changes
 - Time-series analysis
 - Time-series decomposition
 - Stationarity
 - Trend
 - Volatility
 - Road type


Driver clustering


- Clustering

- identify driving profile and their characteristics
- k-means algorithm
- elbow method

- Clustering attributes


- total efficiency
- trend
- volatility
- with no accident history (data_sample_1)
- with accident history (data_sample_2)
- results comparison

Smartphone data collection

- A mobile **application** to record user's driving behaviour (automatic start / stop)
- A variety of **APIs** is used to read mobile phone sensor data
- Data is **transmitted** from the mobile App to the central database
- Data are **stored** in a sophisticated database where they are managed and processed
- Indicators are designed using
 - machine learning algorithms
 - big data mining techniques

Questionnaire data

- Driving experience

- Years of driving experience
- Mileage

- Vehicle

- Age of the vehicle
- Engine capacity
- Ownership
- Fuel consumption

- Driving behaviour

- Accident history
- Self-assessment

- Demographics

- Age
- Gender
- Education

- Data are **anonymized**

- user-agnostic approach
- identify driving behaviors and patterns
- causality between behaviour and other factors
- large-scale samples
- no information on demographics or accident record

- Python programming language

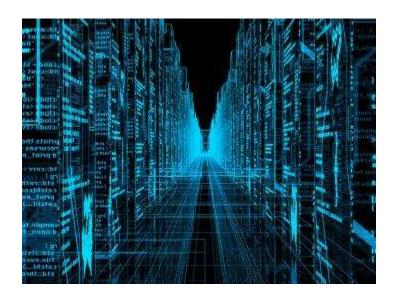
- filter aggregate data
- retain only necessary information
- aggregate data
- data analysis

	Sampling time investigation	Trip efficiency analysis		Driver effici	ency analysi	cy analysis		
			data_s	ample_1	data_sample_2			
			Urban	Rural	Urban	Rural		
Number of drivers	171	88	100	100	43	39		
Number of trips	49,722	10,088	23,000	15,000	9,890	5,850		

Data sample - Driver analysis

- Criteria

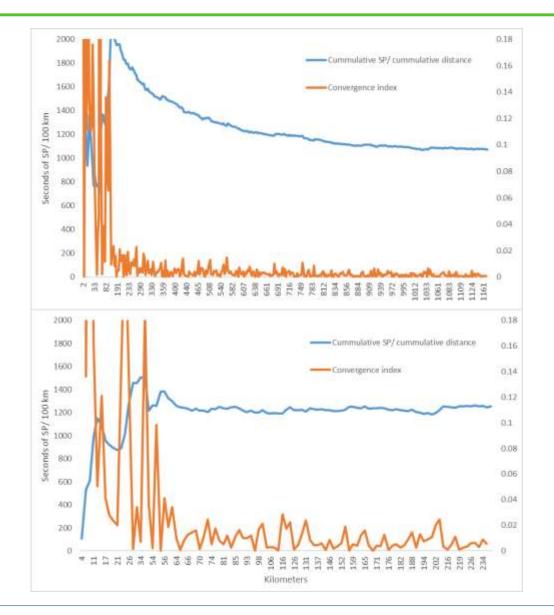
- At least 50 more trips
 - than the minimum number required
 - to create the time series
- Positive mileage on both road types
- Positive sum of input attributes (HA, HB etc.)
- Maximum number of drivers


- Urban

- 100 drivers & 23,000 trips w/o questionnaire data
- 43 drivers & 9890 trips w questionnaire data

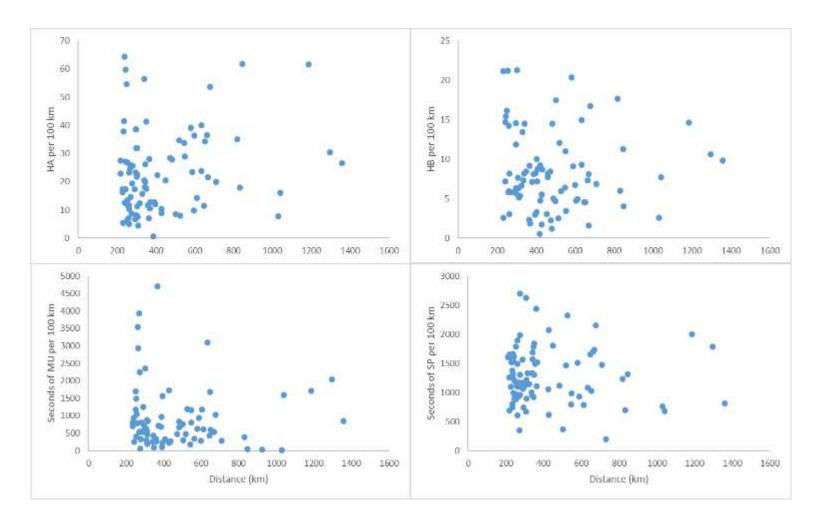
- Rural

- 100 drivers & 15,000 trips w/o questionnaire data
- 43 drivers & 5850 trips w questionnaire data



Data investigation (1/7)

- Convergence index


- Moving window of 40 trips
- at least 200 km
- **-** ≤ 5%

Data investigation (2/7)

<u>Urban RN</u>

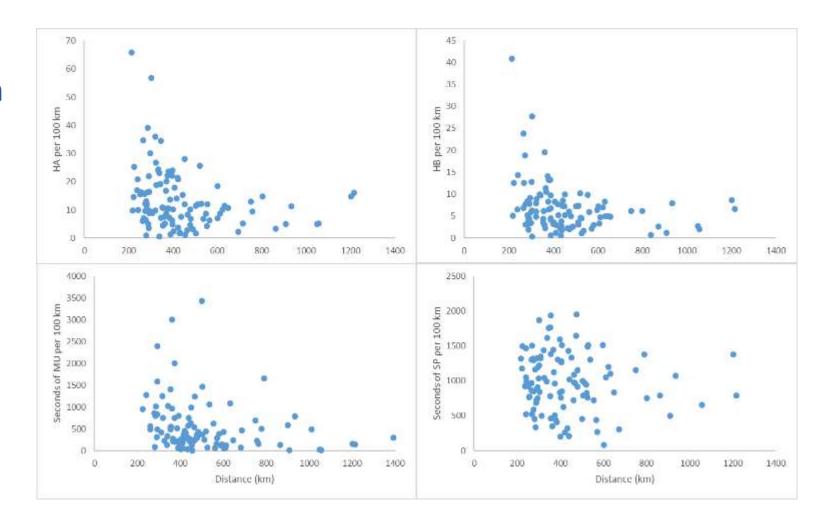
- Weak **positive correlation** between HA and required distance for convergence
- Required monitoring distance is **higher** for **more** aggressive drivers
- **No** apparent **trend** for the rest of the metrics

Data investigation (3/7)

<u>Urban RN</u>

- **Same** sampling **periods** are required for drivers of different percentile value range
- **Maximum** median **distance** value
 - all metrics should have converged to their cumulative average
 - the driving sample acquired is adequate
 - the input/ output ratio is relatively constant to perform DEA analysis

Metric	Descentile senge	Me	etric descrip	tive statis	Distance to convergence			
wetric	Percentile range	Average	St. Dev	Min	Max	Average	Median	St. Dev
НА	0% – 25%	8.18	2.61	-	11.61	389	309	177
	25% – 50%	15.92	2.8	11.61	20.54	399	336	208
па	50% – 75%	25.01	2.48	20.54	30.14	415	322	246
	75% – 100%	43.23	10.92	30.14	-	526	519	293
	0% – 25%	3.05	1.26	-	4.95	515	478	179
	25% - 50% 6.17 0.69 4.95 7.32	408	335	155				
НВ	50% – 75%	8.6 0.83 7.32 10.61 558	431	300				
	75% – 100%	15.65	3.12	10.61	-	469	341	248
	0% – 25%	204	101	-	332	559	407	395
	25% – 50%	495	78					
MU	50% – 75%	799	111	606	1041	443	381	247
	75% – 100%	2063	994	1041	-	493	366	310
	0% – 25%	727	194	-	947	489	339	308
SP	25% – 50%	1081	67	947	1198	343	293	123
38	50% – 75%	1402	119	1198	1594	378	312	188
	75% – 100%	1919	318	1594	-	455	348	Median St. Dev 309 177 336 208 322 246 519 293 519 293 478 179 335 155 431 300 341 248 407 395 341 248 301 174 381 247 366 310 339 308 293 123 312 188


- **519** km

- 75 trips

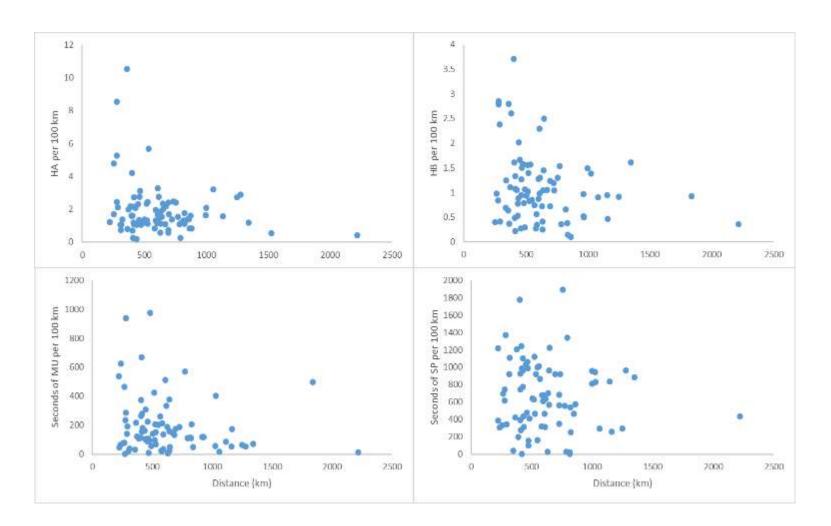
Data investigation (4/7)

Urban express RN

- Weak **negative correlation** between HA, HB, mobile usage and the required distance for convergence
- Required monitoring distance is **higher** for **less** aggressive/ risky/ distracted drivers
- No apparent trend for speeding

Data investigation (5/7)

<u>Urban express RN</u>


- **Different** sampling **periods** are required for drivers of different percentile value range
 - less volatile than in urban road
- **Maximum** median **distance** value
- **579** km - 81 trips

Metric	Descentile senge	Me	etric descrip	tive statis	Distance to convergence			
wethe	Percentile range	Average	St. Dev	Min	Max	Average	Median	St. Dev
	0% – 25%	3.69	1.7	-	6.42	507	431	219
НА	25% – 50%	8.8	1.33	6.42	10.79	405	376	134
па	50% – 75%	13.58	1.98	10.79	17.02	499	Werage Median St. I 507 431 21 405 376 13 499 417 27 349 336 8 52 439 22 429 403 12 489 440 22 389 360 18 630 579 26 485 442 20 501 448 19 444 397 22 419 388 17	270
	75% – 100%	27.27	11.04	17.02	-	349	336	85
	0% – 25%	2.05	0.84	-	3.15	52	439	221
НВ	25% – 50%	4.35		126				
пр	50% – 75%		440	221				
	75% – 100%	13.54	7.16	8.28	-	389	360	187
	0% – 25%	85	48	-	157	630	579	261
MU	25% – 50%	Average St. Dev Min Max Average Median St. 3.69 1.7 - 6.42 507 431 2 8.8 1.33 6.42 10.79 405 376 1 13.58 1.98 10.79 17.02 499 417 2 27.27 11.04 17.02 - 349 336 8 20.5 0.84 - 3.15 52 439 2 4.35 0.67 3.15 5.6 429 403 1 6.92 0.69 5.6 8.28 489 440 2 13.54 7.16 8.28 - 389 360 1 453 9.60 157 371 485 442 2 511 92 371 747 501 448 1 1334 684 747 - 411 362 1 451	209					
WIO	50% – 75%	511	92	371	747	501	448	192
	75% – 100%	1334	684	747	-	411	362	166
	0% – 25%	454	170	-	745	448	399	189
SP	25% – 50%	851	74	745	970	444	397	221
35	50% – 75%	1142	112	970	1315	794053761340249941727003349336851552439221642940312628489440221638936018767630579261714854422097250144819274362166754483991897044439722115419388172	172	
	75% – 100%	AverageSt. DevMinMaxAverageMedianSt. D25% 3.69 1.7 $ 6.42$ 507 431 214 50% 8.8 1.33 6.42 10.79 405 376 13.76 50% 13.58 1.98 10.79 17.02 499 417 27.77 100% 27.27 11.04 17.02 $ 349$ 336 855 25% 2.05 0.84 $ 3.15$ 52 439 222 50% 4.35 0.67 3.15 5.6 429 403 122 50% 4.35 0.67 3.15 5.6 429 403 122 50% 4.35 0.67 3.15 5.6 429 403 122 100% 13.54 7.16 8.28 $ 389$ 360 188 25% 85 48 $ 157$ 630 579 266 50% 263 50 157 371 485 442 200 75% 511 92 371 747 501 448 190 100% 1334 684 747 $ 411$ 362 166 25% 851 74 745 970 444 397 220 50% 851 74 745 970 444 397 220 50% 851 74 745 970 444	195					

Data investigation (6/7)

<u>Highway</u>

- Weak **negative correlation** between HA, HB, mobile usage and the required distance for convergence
- Required monitoring distance is **higher** for **less** aggressive/ risky/ distracted drivers
- No apparent trend for speeding

Data investigation (7/7)

<u>Highway</u>

- **Different** sampling **periods** are required for drivers of different percentile value range
- **Maximum** median **distance** value

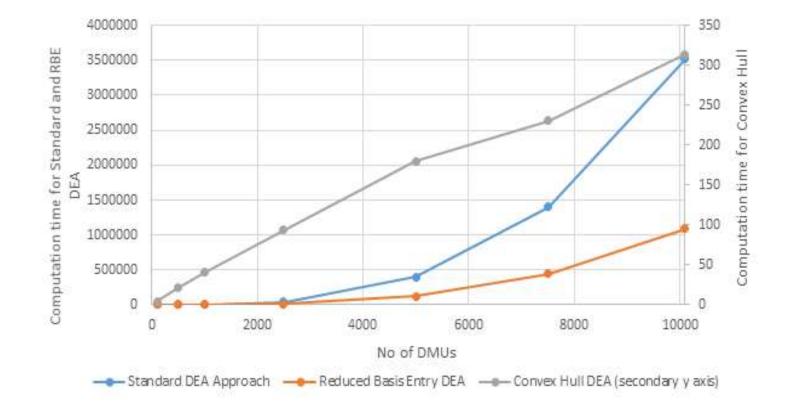
- **611** km

- is not investigated

Metric	Descentile senge	Me	etric descrip	tive statis	Distance to convergence			
wethe	Percentile range	Average	rage St. Dev Min Max		Max	Average	Median	St. Dev
HA	0% – 25%	0.74	0.29	-	1.1	678	585	440
	25% – 50%	1.26	0.12	1.1	1.54	639	605	234
па	50% – 75%	1.87	0.24	1.54	2.3	607	Average Median St. 678 585 4 639 605 2 607 611 2 593 529 2 705 592 4 700 562 2 572 606 2 542 472 2 564 540 2 533 445 2 610 550 2 649 592 2 666 601 2	242
	75% – 100%	3.77	2.12	2.3	-	593	529	289
	0% – 25%	0.36	0.12	-	0.56	705	592	413
НВ	25% – 50%	0.83	0.1	0.56	0.97	700 562 376	376	
пр	50% – 75%	1.15	0.13	0.97	1.38	572	72 606 174	174
	75% – 100%	2.05	0.64	1.38	-	542	472	251
	0% – 25%	35	20	-	66	722	592	468
MU	25% – 50%	101	18	66	· · · · · - 1.1 678 585 440 1.1 1.54 639 605 234 1.54 2.3 607 611 242 2.3 - 593 529 289 . 0.56 705 592 413 0.56 0.97 700 562 376 0.97 1.38 572 606 174 1.38 - 542 472 251 . 66 722 592 468 66 135 623 498 285 135 223 564 540 196 135 223 564 540 196 223 - 533 445 349 . 346 610 550 285 346 641 649 592 392 641 950 666			
WO	50% – 75%	174	26	135	223	564	540	196
	75% – 100%	455	206	223	-	533	445	349
	0% – 25%	193	124	-	346	610	550	285
SP	25% – 50%	505	91	346	641	649	592	392
Эг	50% – 75%	807	100	641	950	666	601	295
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	241						

- **Convex Hull** technique outperforms

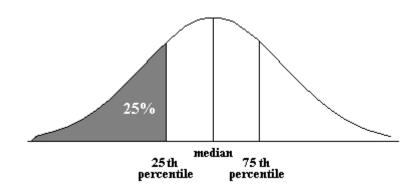
- Significant time reduction


- As the database becomes larger
- Convex Hull DEA 5 minutes
- RBE DEA 12.6 days
- Standard DEA 40.7 days

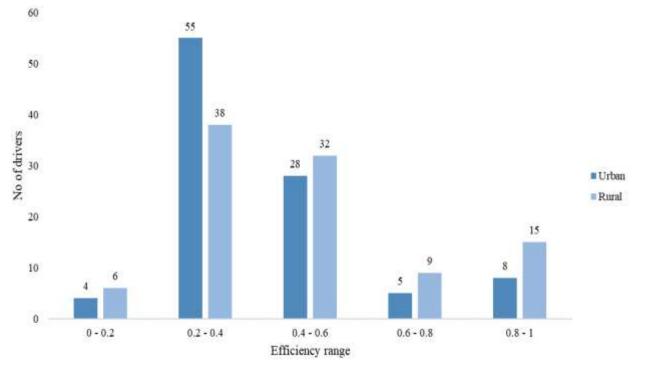
	Comp	utation time	(sec)	CH DEA % compu improveme		RBE DEA % computation time improvement over Standard DEA		
No of DMUs	Standard DEA Approach	RBE DEA	Convex Hull DEA	Standard DEA Approach	RBE DEA			
100	11	6	4	63.64%	33.33%	45.45%		
500	477	169	21	95.60%	87.57%	64.57%		
1000	3250	1121	41	98.74%	96.34%	65.51%		
2500	44435	15570	94	99.79%	99.40%	64.96%		
5000	398485	123986	180	99.95%	99.85%	68.89%		
7500	1400909	444498	231	99.98%	99.95%	68.27%		
10088	3519372	1089731	314	99.99%	99.97%	69.04%		
* Inputs = [ha	, harural. hahishurau]	. Outputs = [di	istance distar	ice _{rural} , distance _{highwa}]			

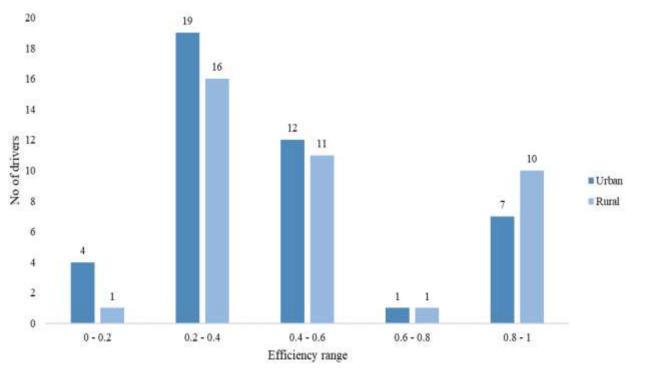
Trip efficiency analysis (2/3)

- Convex Hull DEA - linearly increased


- Standard and RBE DEA - Exponentially increased

Trip efficiency analysis (3/3)


- Least efficient trips
- Efficiency estimation
- Sort
 - larger to smaller
- Percentile
 - 5%, 10%, 25% etc.


Driver efficiency analysis - Aggregated efficiency (1/13)

- data_sample_1
- **Similar distribution** in both road types
- Drivers gathered in **low-medium** efficiency ranges
 - DEA provides a relative index

Driver efficiency analysis - Aggregated efficiency (2/13)

- data_sample_2
- **Similar distribution** in both road types
- Drivers gathered in **low-medium** efficiency ranges
 - DEA provides a relative index

Driver efficiency analysis - Aggregated efficiency (3/13)

- Aggregated driving behaviour

- Percentiles of driving efficiency
- Three efficiency classes
 - 1: Non-efficient drivers
 - 2: Weakly efficient drivers
 - 3: Efficient drivers
- Median driving characteristics

- Urban RN

- class 1 -> class 2
 - number of harsh acceleration/ braking events
- class 2 -> class 3
 - time of speeding

- Urban express RN

- class 1 -> class 2
 - time of speeding
- class 2 -> class 3
 - number of harsh acceleration events
 - time of mobile usage

			Driving		Efficiency classes	S										
Sample type	Road type	No of drivers	characteristics (/100km)	Class 1: 0 - 25 % percentile	Class 2: 25 - 75 % percentile	Class 3: 75 - 100 % percentile										
				0.22	0.36	0.61										
	Urban	100	ha	21.49	11.82	Class 2: 25 - 75 % percentile 0.36 Class 3: 75 - 100 % percentile 0.61										
.	L L	100	hb	Class 1: 0 - 25 % percentile Class 2: 25 - 7 % percentile 0.22 0.36 21.49 11.82 9.64 5.31 316 205 1243 878 0.24 0.42 34.11 24.06 14.92 9.16 529 419 1564 1004 0.21 0.38 39.26 21.71 16.38 8.07 751 553 1892 965 0.28 0.44 9.28 5.21 316 305	5.31	3.68										
le			mu (sec)	316	205	141										
ŭ			sp (sec)	1243	878	355										
data_sample_1		efficiency		0.24	0.42	0.90										
q	Rural	100	ha	34.11	24.06	11.30										
	Ru	100	hb	14.92	9.16	5.42										
			mu (sec)	529	419	165										
			sp (sec)	1564	1004	708										
			efficiency	0.21	0.38	1.00										
	ban	10	ha	39.26	% percentile 0.36 11.82 11.82 5.31 205 878 0.42 0.42 24.06 9.16 419 1004 0.38 21.71 8.07 553 965 0.44 11.86 5.21 305	9.98										
~	Urban		43	43	43	43	43	43	43	43	43	43	hb	16.38	8.07	4.19
e'			mu (sec)	751	553	100										
Ĕ			sp (sec)	1892	965	477										
data_sample_2			efficiency	0.28	0.44	1.00										
q	Rural	20	ha	23.04	11.86	7.49										
	Ru	22	hb	9.28	5.21	3.16										
			mu (sec)	316	305	160										
			sp (sec)	1423	939	378										

Driver efficiency analysis - Aggregated efficiency (4/13)

- Mobile usage

- Slight differences between classes 1 and 2
 - approximately the same usage for drivers of all classes
 - DEA sensitivity to outliers
- **Higher number** of harsh events in express Urban roads than in Urban roads
- Number of HA events = 2 * Number of HB events

			Driving		Efficiency classes	5	
Sample type	Road type		Driving characteristics (/100km)	Class 1: 0 - 25 % percentile	ercentile % percentile % percentile 0.22 0.36	Class 3: 75 - 100 % percentile	
			efficiency	0.22	0.36	0.61	
	ban	100	ha	21.49	11.82	8.82	
н,	D T	100	hb	9.64	5.31	3.68	
<u>e</u>			mu (sec)	316	205	141	
Ĕ			sp (sec)	1243	Class 2: 25 - 75 % percentile Class 3: 75 - 1 % percentile 0.36 0.61 11.82 8.82 5.31 3.68 205 141 878 355 0.42 0.90 24.06 11.30 9.16 5.42 419 165 1004 708 21.71 9.98 8.07 4.19 553 100 965 477 0.44 1.00 11.86 7.49 5.21 3.16	355	
data_sample_1			Efficiency	0.24	0.42	0.90	
q	ral	100	ha	34.11	24.06	11.30	
	Ru	100	hb	14.92	9.16	5.42	
			mu (sec)	529	419	165	
			sp (sec)	1564	243878355240.420.90.1124.0611.30.929.165.42294191656641004708210.381.00.2621.719.98	708	
			efficiency	0.21	0.38	1.00	
	Dan	10	ha	39.26	0 - 25 entileClass 2: $25 - 75$ % percentileClass % p2 0.36 2 0.36 9 11.82 4 5.31 5 205 3 878 4 0.42 1 24.06 2 9.16 2 9.16 2 9.16 4 1004 1 0.38 2 965 8 8.07 1 553 2 965 8 0.44 4 11.86 8 5.21 5 305	9.98	
~	L T	45	hb	16.38	8.07	4.19	
			mu (sec)	751	553	100	
Ĕ			sp (sec)	1892	965	477	
data_sample_2			efficiency	0.28	0.44	1.00	
q	Rural	39	ha	23.04	11.86	7.49	
	Ru	39	hb	9.28	5.21	3.16	
			mu (sec)	316	305	160	
			sp (sec)	1423	939	378	

Driver efficiency analysis - Efficient level (5/13)

		Re	al level of	metrics			La	mdas Drive	•	rs:	Efficient level of metrics				
Driver No	distance _{urban}	ha _{urban}	hb _{urban}	speeding _{urban}	mobile _{urban}	Theta	12	34	40	42	distance _{urban}	ha _{urban}	hb _{urban}	speeding _{urban}	mobile _{urban}
1	1868	326	134	21712	9954	0.581	-	0.52	0.14	0.06	3214.3	159.8	77.9	12617.9	5784.7
2	2456	574	85	27049	13974	0.696	-	0.19	0.40	0.20	3526.5	154.8	59.2	18838.2	9732.1
3	1634	709	509	15888	42817	0.391	0.79	-	0.20	-	4182.6	277.0	78.1	6206.9	10434.2
4	2219	233	181	27052	12421	0.637	-	0.23	0.31	0.18	3481.0	148.5	59.1	17244.6	7917.9
5	4223	1088	309	37825	29581	0.613	0.30	1.16	0.47	-	6887.3	417.6	189.5	23192.7	18137.9
6	2773	652	251	25829	25887	0.529	0.60	0.51	0.30	-	5245.3	344.7	128.8	13654.8	13685.4
7	2086	265	149	20880	14036	0.619	-	0.52	0.28	0.04	3371.9	163.9	79.2	12917.2	8683.2
8	1789	460	323	17185	5960	0.656	-	0.75	-	0.01	2728.0	184.3	98.1	11269.8	3908.5
9	1630	184	82	30801	8955	0.528	-	-	0.21	0.22	3085.0	97.2	30.8	14784.6	4731.5
10	808	266	95	9985	6562	0.443	0.11	0.24	0.04	-	1824.6	97.2	42.1	4421.6	2905.8
11	3012	913	152	21604	43562	0.585	0.72	-	0.83	-	5149.6	308.3	88.9	12636.1	23107.5
12	1462	329	92	5074	7781	1.000	1.00	-	-	-	1462.0	329.0	92.0	5074.0	7781.0
* Inputs =	= ['ha _{urban} ', 'hb _{urban}	', 'speedin	g _{urban} ', 'mo	bile _{urban} '], Output	= ['distance _{urban}	']									

Driver efficiency analysis - Temporal evolution (6/13)

- Temporal evolution

- time window
 - Urban: 75
 - Express Urban: 81
- **Less efficient** drivers are less volatile
- Common local **minimum** and **maximum** points
 - outlier existence
 - efficiency is benchmarked

Driver efficiency analysis - Temporal evolution (7/13)

- Time-series

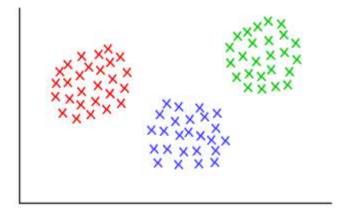
- Stationarity

- no stationary urban road users
- insignificant number of rural road users

- Trend

- average approximately the same in both road types
- higher range in rural road type

- Volatility


- average approximately the same in both road types
- higher range in rural road type

Driver efficiency analysis - Clustering (8/13)

- Three clusters for both samples

- cluster 1: typical driver
- cluster 2: unstable driver
- cluster 3: cautious driver

Driver efficiency analysis - Clustering (9/13)

- Typical drivers:

- high number of drivers
- low total efficiency
- very low positive trend
- medium to high volatility
- low accident frequency

Sample type	Road type	Cluster	Trend (*10 ⁻³)	Volatility	Efficiency	Accidents/ 10 years of driving experience
	Urban	1 (typical)	very low positive	medium - high	low	low - medium
E,		2 (unstable)	medium positive	medium - high	medium	low
data_sample_1		3 (cautious)	medium negative	low - medium	medium - high	low
ta_s		1 (typical)	low positive	medium	low	low - medium
qai	Rural	2 (unstable)	high negative	high	medium - high	medium - high
		3 (cautious)	high positive	medium - high	high	low
	Urban	1 (typical)	very low positive	medium	low	low
data_sample_2		2 (unstable)	low - medium positive	medium	low	high
		3 (cautious)	medium negative	low	high	low
	Rural	1 (typical)	barely no trend	medium - high	low	low
		2 (unstable)	low negative	medium	low	high
		3 (cautious)	high positive	medium - high	high	low

Driver efficiency analysis - Clustering (10/13)

- Unstable drivers:

- efficiency
 - medium to high total for data_sample_1
 - low total for data_sample_2
- trend
 - medium positive for data_sample_1
 - medium negative for data_sample_2
- medium to high volatility
 - high for data_sample_1
 - medium for data_sample_2
- medium to high accident frequency

Sample type	Road type	Cluster	Trend (*10 ⁻³)	Volatility	Efficiency	Accidents/ 10 years of driving experience
	Urban	1 (typical)	very low positive	medium - high	low	low - medium
E,		2 (unstable)	medium positive	medium - high	medium	low
data_sample_1		3 (cautious)	medium negative	low - medium	medium - high	low
ta_s		1 (typical)	low positive	medium	low	low - medium
qai	Rural	2 (unstable)	high negative	high	medium - high	medium - high
		3 (cautious)	high positive	medium - high	high	low
	Urban	1 (typical)	very low positive	medium	low	low
e_2		2 (unstable)	low - medium positive	medium	low	high
data_sample_2		3 (cautious)	medium negative	low	high	low
data_	Rural	1 (typical)	barely no trend	medium - high	low	low
		2 (unstable)	low negative	medium	low	high
	Ľ	3 (cautious)	high positive	medium - high	high	low

Driver efficiency analysis - Clustering (11/13)

- Cautious drivers:

- high total efficiency

- trend

- medium negative for urban road
- high positive for express urban road
- medium volatility
 - low to medium for urban road
 - medium to high for express urban road
- low accident frequency

Sample type	Road type	Cluster	Trend (*10 ⁻³)	Volatility	Efficiency	Accidents/ 10 years of driving experience
	Urban	1 (typical)	very low positive	medium - high	low	low - medium
÷,		2 (unstable)	medium positive	medium - high	medium	low
data_sample_1		3 (cautious)	medium negative	low - medium	medium - high	low
ta_s	Rural	1 (typical)	low positive	medium	low	low - medium
qa		2 (unstable)	high negative	high	medium - high	medium - high
		3 (cautious)	high positive	medium - high	high	low
	Urban	1 (typical)	very low positive	medium	low	low
data_sample_2		2 (unstable)	low - medium positive	medium	low	high
		3 (cautious)	medium negative	low	high	low
	Rural	1 (typical)	barely no trend	medium - high	low	low
		2 (unstable)	low negative	medium	low	high
	Ŧ	3 (cautious)	high positive	medium - high	high	low

Driver efficiency analysis - Clustering (12/13)

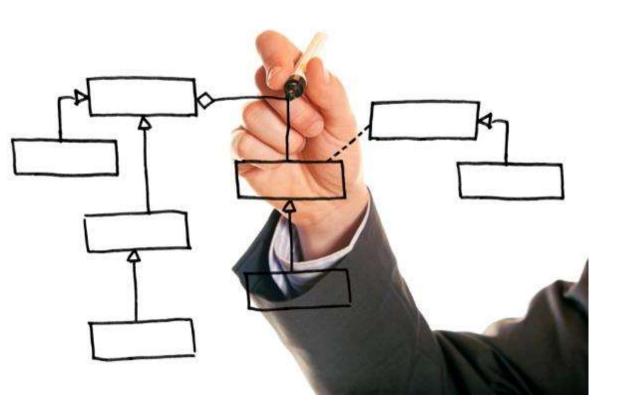
- Attributes' values are reducing while shifting to a class of higher efficiency
- Typical drivers
 - metrics' values in urban roads are twice as in express urban roads
- Cautious drivers
 - significantly lower level of driving characteristics for all metrics

Sample type	Road type	No of drivers	Driving characteristics	Cluster 1 (typical)	Cluster 2 (unstable)	Cluster 3 (cautious)
	Urban	100	efficiency	0.33	0.61	0.81
			ha	26.75	17.20	6.89
_			hb	10.05	7.30	3.44
	_		mu	499	165	60
du			sp	1095	619	1240
data_sample_1	Rural	100	efficiency	0.36	0.69	0.88
qai			ha	14.97	6.36	9.65
			hb	7.59	3.09	3.61
			mu	234	285	86
			sp	988	923	347
	Urban	43	efficiency	0.37	0.33	1.00
			ha	22.05	41.26	14.13
data_sample_2			hb	8.10	15.39	5.28
			mu	653	481	82
			sp	1349	1140	436
	Rural	39	efficiency	0.37	0.39	1.00
			ha	12.35	19.24	5.74
			hb	6.66	6.84	2.46
			mu	316	380	149
			sp	1125	1149	415

Driver efficiency analysis - Clustering (13/13)

- Unstable drivers of

data_sample_2


- high number of accidents
- low driving efficiency
- highest number of harsh acceleration and braking events
- highest mobile use and speeding in express urban road
- Non-steady drivers with poor driving behaviour => most risky drivers

Sample type	Road type	No of drivers	Driving characteristics	Cluster 1 (typical)	Cluster 2 (unstable)	Cluster 3 (cautious)
	Urban	100	efficiency	0.33	0.61	0.81
			ha	26.75	17.20	6.89
_			hb	10.05	7.30	3.44
	_		mu	499	165	60
dw			sp	1095	619	1240
data_sample_1	Rural	100	efficiency	0.36	0.69	0.88
qai			ha	14.97	6.36	9.65
			hb	7.59	3.09	3.61
			mu	234	285	86
			sp	988	923	347
	Urban	43	efficiency	0.37	0.33	1.00
			ha	22.05	41.26	14.13
~			hb	8.10	15.39	5.28
data_sample_2			mu	653	481	82
			sp	1349	1140	436
	Rural	39	efficiency	0.37	0.39	1.00
			ha	12.35	19.24	5.74
			hb	6.66	6.84	2.46
			mu	316	380	149
			sp	1125	1149	415

Conclusions (1/5)

 Innovative methodological approach for driving efficiency benchmarking as well as for estimating the efficient level of metrics of each driver.

- The **integration** of DEA with the **convex hull** algorithmic approach yielded significantly better results than the rest of the approaches tested

Conclusions (2/5)

- The required **sampling** mileage is identified and is different for each:
 - road type
 - driving metric
 - driving aggressiveness/ risk/ distraction level
- Not a single critical metric to determine the required driving data amount
- More aggressive/ risky drivers need less monitoring in express urban road and highways

Conclusions (3/5)

- **Insignificant difference** in mobile usage between drivers of medium and low efficiency classes
- The number of harsh acceleration events is
 twice as much as the number of harsh
 braking events
- The **shift** between efficiency classes is mainly affected by **different** driving **metrics** in urban and express urban road types

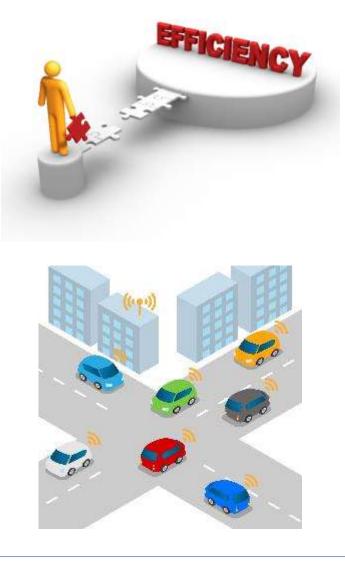
Conclusions (4/5)

- Average **volatility** is approximately the **same** in both road types

- Average **trend** is approximately the **same** between the two road types

- **Stationarity** is similar for all drivers and road types

Conclusions (5/5)


- There are **three** drivers' **clusters** the: a) typical, b) unstable and c) cautious drivers
- Drivers should be continuously monitored and re-evaluated to capture temporal shifts
- Prior information on driving accident data affects only the form of the most unstable drivers

Contributions

- Develops a **methodological framework** for driving safety efficiency evaluation on trip and driver basis based on data science techniques
- Quantifies the driving data that should be collected when evaluating driving behaviour in terms of safety
- Provides insights on the main **driving** behaviour **profiles** that exist and their characteristics
- Makes use of an **innovative** smartphone **data collection** system

- Personal and general **feedback** to drivers on

- their overall driving efficiency and its evolution
- an inefficient trip is performed
- driving characteristics that should be improved
- each road type
- Reduce individual driving risk
- Develop insurance pricing schemes
 charge premiums based on driving efficiency

Future challenges (1/2)

- Exploit a larger driving sample

- highway road type investigation
- safety efficiency estimation is more representative
- DEA is less sensitive to outliers
- metrics to distance ratio evolution
- relationship between the aggressiveness of a driver and the necessary monitoring distance
- known accident data record
- investigate more on the computation time optimization

- Type of **approach**

- macroscopic
 - shifts of drivers over long time periods
- microscopic
 - study the spatiotemporal driving characteristics of each trip
- combination

- **Prediction** of drivers' overall efficiency or cluster

- provide recommendation on the level of metrics that should be reached

Future challenges (2/2)

- **DEA limitations** – zero sum input attributes

- Increase the number of attributes
 - headways
 - lane changing
 - eye movement
 - drowsiness

- Data recording through

- cameras
- eye-tracking devices
- radars
- LiDARs
- on-board-diagnostic devices (OBD)
- Study **dynamic evolution** of driving efficiency to quantify
 - how rapidly driving profiles change
 - how much driving profiles change

utes

Benchmarking Driving Efficiency using Data Science Techniques applied on Large-Scale Smartphone Data

Dimitris Tselentis

Civil - Transportation Engineer Ph.D. Candidate – Researcher

> www.nrso.ntua.gr/dtsel/ dtsel@central.ntua.gr