

NTUA Seminar

Connected and Automated Vehicles (CAVs): Challenges and Opportunities for Traffic Operations

Alexander Skabardonis NTUA 1977, University of California, Berkeley

Athens, May 31, 2018

History of Automated Driving (pre-Google)*

- 1939 General Motors "Futurama" exhibit
- 1949 RCA technical explorations begin
- 1950s GM/RCA collaborative research
- 1950s GM "Firebird II" concept car
- 1964 GM "Futurama II" exhibit
- 1964-80 Research by Fenton at Ohio State University
- 1960s Kikuchi and Matsumoto wire following in Japan
- 1970s Tsugawa vision guidance in Japan
- 1986 California PATH and PROMETHEUS programs start
- 1980s Dickmanns vision guidance in Germany
- 1994 PROMETHEUS demo in Paris
- 1994-98 National AHS Consortium (Demo '97)
- 2003 PATH automated bus and truck demos
- (2004 2007 DARPA Challenges)

*Source: Steven Shladover, PATH

Background: AHS Implementation

- Dedicated AHS lanes
- Automated Check-in
- Automated Check-out
- Lateral and Longitudinal Controls
- Automated merging/diverging
- Malfunction Management & Analysis

AHS Demo: San Diego 1997

Capacity of AHS Lane

Capacity = C = v. n/ [ns + a(n - 1) + d] veh / lane / hour Assume v = 72 k/h, s = 5 m. Then

Notes	С	d	а	n
n=20 yields nearly 4	2,100	30	-	1
imes today's capacity	3,840	60	2	5
	6,600	60	2	15
capacity proportional	8.000	60	1	20
to speed	,			

Levels of Automation (1)

Levels of Automation (2)

Example Systems at Each Automation Level

(based on SAE J3016 - http://standards.sae.org/j3016_201609/)

Level	Example Systems	Driver Roles
1	Adaptive Cruise Control OR Lane Keeping Assistance	Must drive <u>other</u> function and monitor driving environment
2	Adaptive Cruise Control AND Lane Keeping Assistance Highway driving assist systems (Mercedes, Tesla, Infiniti, Volvo) Parking with external supervision	Must monitor driving environment (system nags driver to try to ensure it)
3	Freeway traffic jam "pilot"	May read a book, text, or web surf, but be prepared to intervene when needed
4	Highway driving pilot Closed campus "driverless" shuttle "Driverless" valet parking in garage	May sleep, and system can revert to minimum risk condition if needed
5	Ubiquitous automated taxi Ubiquitous car-share repositioning	Can operate anywhere with pour drivers needed

CAVs: Modeling Needs

Source: Srinivas Peeta Workshop ISTTT22, 2017

CAVs: Modeling Challenges

Modelling CAV is like drawing a Rhinoceros you have never seen

And strength of the second sec

Models: Challenges and Opportunities (1)

 Existing Traffic Models Luck Features to Account for Changes due to CAVs Simplified assumptions on CAVs car-following, lane changing models
 Car-following model for mixed traffic
 Interactions with manual driven vehicles
 Macroscopic traffic flow relationships

New Models Needed to Leverage Technological capabilities, and Capture Emergent Interactions Operational and communication protocols Modeling platoon streams for CAVs *Platoon stability Impacts of latency*

Models: Challenges and Opportunities (2)

- Modeling of CAVs and Technology Integration (V2X) Traffic signal control ATM strategies on freeways Highway design for mixed and purely autonomous vehicles
- Modeling Incidents/Re-routing Diversion strategies under cooperation and real-time information available to CAVs
- Model Calibration Data sources? Framework?

Data Opportunities-Challenges

CAVs can be used as mobile sensors

- CAVs provide data for trajectory construction
- Current TMC systems are not equipped to handle CAV data Minimizing data transmission/processing costs while maintaining accuracy and timeliness requirements
- No standards/procedures exist for collecting, processing integrating CAV data into existing operations
- CAV Operational Characteristics not yet determined
- Effect of advance information on CAVs is unknown until tested
- Impacts on intersection capacity and performance depend on CAVs penetration rate (*will change over time*)

Impact of Penetration Rates*

Cooperative Adaptive Cruise Control (CACC)

Field Experiments

CACC Users accept short gaps

Modeling ACC/CACC Vehicles*

- Field Data on ACC and CACC operation
- Improved Car Following Lane Changing Models
- Reproduce Accurately Field Conditions

Merging Throughput with CACC

CAV Applications: Traffic Signals (1)

V: Each vehicle a sensor Here I am

CAV Applications: Traffic Signals (2)

V2I

- V: vehicles here I am
- I: intersection: SpaT Message

Operational Characteristics

Lost time reduction Increased saturation flow rate

Control Strategies

Multimodal adaptive control Dynamic lane allocation Eco Driving Signal-Free Intersections

CAVs: Capacity & Delay at Traffic Signals

• Issues:

- CAVs Penetration Rate
- Differences in driving behaviour of (N) and (CAV)
- Relative Position of N and CAV
- Complicated dynamics of car following situations

Ramezani, M., J.A. Machago, A. Skabardonis, N. Geroliminis, "Capacity and Delay Analysis of Arterials with Mixed Autonomous and Human-Driven Vehicles," 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, Napoli, Italy, June 2017.

CAVs: Saturation Headway (1)

- Given the penetration rate of AV, $0 \le p \le 1$
- The expected headway of a mixed platoon depends on the relative locations of AV in the platoon
- Lower Bound Vehicle Headway

CAVs: Saturation Headway (2)

Upper Bound of Vehicle Headway

TIGOB IN IN

CAVs: Saturation Headway (3)

Expected Vehicle Headway

$$\bar{h} = \sum_{k=0}^{n} \bar{h}_k \cdot \mathcal{P}(X=k); \quad \mathcal{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- n = number of vehicles
- k = number of AV vehicles
- p = penetration rate

Example:

n = 4 [veh]; p = 0.25

Possible scenarios:

- k = 0 (only N)
- $\bullet k = 1$
- $\bullet k = 2$
- $\bullet k = 3$
- k = 4 (only AV)

CAVs: Saturation Headway (4)

Expected Vehicle Headway – Example (cont.)

 $h_{\rm N-N} = 1.8 [s]; h_{\rm AV-AV} = 0.9 [s]; h_{\rm N-AV} = 1.2 [s]; h_{\rm AV-N} = 1.8 [s]$

CAVs: Saturation Headway (5)

- Expected, upper and lower bounds of mixed flow headway
- validation of theoretically obtained headways using microsimulation

Delay at an Arterial Signalized Link (1)

Scenarios

- i. mixed lanes
- ii. dedicated lanes for AV and N
- iii. one mixed lane and one AV dedicated lane
- iv. one mixed lane and one N dedicated lane

Delay at an Arterial Signalized Link (2)

i. dedicated lanes for AV and N (cont..)

Delay at an Arterial Signalized Link (3)

Eco-Driving: Background (1)

Importance of Vehicle Activity

Eco-Driving: Background (2)

Impacts of Traffic Conditions & Operations

Uncertainty on CAVs Impacts on Energy & Emissions

Changes in traffic flows ⇒ Different Speeds

- Increased capacity
- Smoother speeds
- Potentially faster speeds
- Smart intersections

Travel behavior \Rightarrow +/- VMT

- Mode shifts (to/away from transit with automated shuttles)
- Increased access to mobility of underserved populations
- Changes in the value of time

Higher Vehicle Energy Efficiency

- Smoother driving
- Predictive energy management
- Reduced aero losses in platoons
- Downsizing (due to performance/safety)

?

÷ 2

+ Interaction with advanced powertrain technology!

US DOE Initiative

Evaluating new vehicle technologies, developing new vehicle controls

Developing controls for connected and automated vehicles Analyzing the impact of new infrastructure, control and new forms of transportation

Single Vehicle

Eco-driving Eco-Routing Predictive Control

Small Network

Connected Intersections V2X ACC, CACC & Platooning

Entire Urban Area

Connected Intersections Platooning & Eco-lanes Low-emission zones VMT changes

Field Test: Eco-Driving at Intersections*

Inputs

- "Here I am" V2I safety mesage
- Signal Phase & Timing (SPaT)

Dynamic Speed Advisory

*PATH, FHWA Exploratory Advanced Research

Field Test: Communication System

BMW Research Vehicle

Field Test: Scenarios

- 1. Uninformed Driver (Baseline Scenario)
- 2. Informed Driver

- Driver Follows speed-recommendation

3. Individual Vehicle Priority & Informed Driver

- Driver Follows speed-recommendation
- intersection adapts timing with individual vehicle priority

4. Individual Vehicle Priority & Uninformed Driver - intersection adapts timing with individual vehicle priority

Field Test: Results (1)

	Uninformed	Informed	APIV	APIV &	
	Driver	Driver	Uninformed	Informed	
Number of Test Runs	210	232	108	108	
Stop Frequency (%)	48.57	30.60	14.81	0.93	
% Change	-	-36.99%	-69.50%	-98.09%	
Mean Stopped Time	15 77	10.40	5 56	2.00	
(sec)	10.77	10.49	5.56	2.00	
% Change	-	-33.48%	-64.74%	-87.32%	
Travel Time (sec/trip)	40.69	40.30	31.65	31.00	
% Change	-	-0.96%	-22.22%	-23.81%	
Fuel (I/100km)	10.2	8.8	8.3	7.3	
% Change	-	-13.59%	-19.06%	-28.35%	

Field Test: Results (2)

Field Test: Results (3)

Arterial Field Test: El Camino Real

Implementation Challenges

- Green Window is not Fixed
- Need for Speed Prediction at successive Intersections
- Interactions with In-Informed Traffic
- Frequency of Speed Changes--Compliance

Dynamic Lane Allocation/Grouping (DLG)

Problem

Given real-time O-D demands at a signalized intersection, determine the lane assignment in real-time to improve performance

Approach

For each intersection leg find the optimum lane grouping Minimize the max lane flow ratio y (y = flow/saturation flow) St: Allowable movements (safety constraints) Sub-problem:

Determine the steady state traffic flow among lanes within each lane group also

DLG Impacts: Max Lane Flow Ratio/Lane

Under DLG, max lane flow ratio always keeps as low as 0.2

DLG Impacts: Average Delay

% Left Turns

Public Agencies: Planning & Operations Analyses

- What link capacity to use in 2030 transpoartation plan?
- What are the impacts on operational performance (reliability)
- What will be the market penetration of CAVs?
- Do I need traffic lights?
- Highway Capacity Manual Procedures
 Use of "adjustment factors"
 Example: Critical Intersection control strategy improves
 intersection capacity by 7%
 Based on field data
 - Source of Factors
 Field data (not yet available)
 Simulation (assumptions)

Implementation Challenges Background: Initial Deployment Plans

The Safety Challenge

 Human Drivers in the U.S (2015)
 500,000 miles driven between crashes (approximately 1.9 years)

1.8 million miles driven between injury crashes98 million miles driven between fatal crashes (approximately 370 years of operation between extreme failures)

Automated Vehicles

AV rate is 40K miles per accident

Waymo rate is 5.5K miles per disengagement

Waymo accident (disengagement) rate is 13 (100) times worse than human drivers.

Disengagement: a failure of the technology is detected, or when the safe operation of the vehicle requires that the driver take over manual control.

US Legislation

STATE / CONTENT	Definitions / Committee on CAVs	Testing	Platooning	Public Operation	Liability Issues	Bill, Year
Alabama	Х					SJR 81, 2016
Arkansas	Х	Х	Х	Х		HB 1754, 2017
California	Х	Х	Х		Х	SB 1298, 2012 / AB 1592, 2016 / AB 669, 2017 / AB 1444, 2017 / SB 145, 2017
Colorado	Х	Х			Х	SB 213, 2017
Connecticut	Х	Х		Х		SB 260, 2017
Florida	Х	Х	Х	Х	Х	HB 1207, 2012 / HB 599, 2012 / HB 7027, 2016 / HB 7061, 2016
Georgia	Х			Х	Х	HB 472, 2017 / SB 219, 2017
Illinois	Х					HB 791, 2017
Louisiana	Х					HB 1143, 2016
Michigan	Х	Х	Х	Х	Х	SB 996, 2016 / SB 997, 2016 / SB 998, 2016 / SB 169, 2013 / SB 663,2013
Nevada	Х	Х	Х	Х	Х	AB 511, 2011 / SB 140, 2011 / SB 313, 2013 / AB 69, 2017
New York	Х	Х				SB 2005, 2017
North Carolina	Х		Х	Х		HB 469, 2017 / HB 716, 2017
North Dakota	Х					HB 1065, 2015 / HB 1202, 2017
South Carolina	Х		Х			HB 3289, 2017
Tennessee	Х	Х	Х	Х	Х	SB 598, 2015 / SB 2333, 2016 / SB 1561, 2016 / SB 676, 2017 / SB 151, 2017
Texas	Х	Х		Х	Х	HB 1791, 2017 / SB 2205, 2017
Utah	Х	Х				HB 373, 2015 / HB 280, 2016
Vermont	Х					HB 494, 2017
Washington, D.C.				Х	Х	DC B 19-0931, 2012

USDOT Activities

USDOT Strategic Priorities

Safety Infrastructure Technology and Innovation Reducing Regulatory Burden

Connected Vehicles Test Beds

Safety Pilot --Michigan Mobility Wyoming Tampa New York

Safety Pilot -2836 Vehicles

V₂V Forward Collision Warning **Emergency Electronic Brake** Light Intersection Movement Assist Blind Spot Warning/Lane **Change Warning Do Not Pass Warning** Left Turn Across Path/ **Opposite Direction Right Turn in Front** V21 Signal Phase and Timing **Curve Speed Warning Railroad Crossing Warning** Pedestrian Detection

Informed NHTSA Decision February 2014

Estimate of Market Introduction*

*Steve Shladover, PATH Program

NTUA Seminar

Connected and Automated Vehicles (CAVs): Challenges and Opportunities for Traffic Operations

Alexander Skabardonis NTUA 1977, University of California, Berkeley

Athens, May 31, 2018