
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ 
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 
ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟΔΟΜΗΣ 
ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΣΤΡΩΜΑΤΩΝ 
 

 
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 

 

Τεχνητή Νοημοσύνη και οδοστρώματα – 

Εφαρμογή στην πρόβλεψη της 

συμπεριφοράς οδοστρωμάτων 

 

 

 

 

Παπαζαφειροπούλου Μαρίνα 

Επιβλέπουσα: Πλατή Χριστίνα, Καθηγήτρια ΕΜΠ 

Μάρτιος 2025  



 1 

 

  



 2 

ΕΥΧΑΡΙΣΤΙΕΣ 

Με την ολοκλήρωση της διπλωματικής μου εργασίας, θα ήθελα να ευχαριστήσω 

θερμά όσους συνέβαλαν στην εκπόνηση της αλλά και όσους στήριξαν την 

προσπάθεια μου αυτή, με οποιοδήποτε τρόπο. 

Πρωτίστως, θα ήθελα να ευχαριστήσω ιδιαίτερα την επιβλέπουσα καθηγήτρια της 

διπλωματικής μου εργασίας, κ. Χριστίνα Πλατή, Καθηγήτρια ΕΜΠ, για την 

καθοδήγηση, την υποστήριξη και την άριστη συνεργασία καθ’ όλη τη διάρκεια της 

εκπόνησης της εργασίας. 

Επιπλέον, θα ήθελα να ευχαριστήσω την οικογένεια μου και όλους τους δικούς μου 

ανθρώπους για την πολυεπίπεδη στήριξη που μου προσέφεραν, χάρη στην οποία 

κατάφερα να ολοκληρώσω αυτόν τον κύκλο σπουδών. 

 

 

  



 3 

ΠΕΡΙΛΗΨΗ 

Οι  υφιστάμενες μέθοδοι αξιολόγησης, συντήρησης και σχεδιασμού των 

οδοστρωμάτων βασίζονται σε μοντέλα και ελέγχους, τα οποία μπορεί να απαιτούν 

χρόνο, ανθρώπινο δυναμικό ή να είναι κοστοβόρα. Η ενσωμάτωση της Tεχνητής 

Nοημοσύνης στη μηχανική των οδοστρωμάτων εξελίσσει τις μεθόδους αυτές 

μειώνοντας σημαντικά τον χρόνο διεξαγωγής τους και αυξάνοντας την 

αποδοτικότητα τους. Στην παρούσα διπλωματική εργασία, διερευνάται η εφαρμογή 

διαφόρων μοντέλων με σκοπό την καλύτερη δυνατή πρόβλεψη τιμών του δείκτη 

ομαλότητας των οδοστρωμάτων. Τέσσερα μοντέλα βασισμένα στην Τεχνητή 

Νοημοσύνη αναπτύχθηκαν και εκπαιδεύτηκαν χρησιμοποιώντας δεδομένα τιμών 

ομαλότητας οδοστρώματος για τον εντοπισμό ακολουθιών και τη δημιουργία 

αξιόπιστων προβλέψεων για τιμές του δείκτη ομαλότητας. Τα μοντέλα 

ενσωματώνουν διάφορους αλγορίθμους μηχανικής μάθησης για την ανάλυση των 

μετρήσεων που έχουν διεξαχθεί στο υπό μελέτη οδικό τμήμα. Η συγκριτική ανάλυση 

των επιδόσεων των μοντέλων αναδεικνύει τα πλεονεκτήματα και τους περιορισμούς 

κάθε προσέγγισης, καταδεικνύοντας τις δυνατότητες των μεθοδολογιών που 

βασίζονται στην Τεχνητή Νοημοσύνη για την πρόβλεψη της συμπεριφοράς των 

οδοστρωμάτων μέσα από επιμέρους χαρακτηριστικά τους, όπως είναι και η 

ομαλότητα τους. 
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ABSTRACT 

Existing methods of pavement evaluation, maintenance and design are based on 

models and testing, which can be time-consuming, manpower-intensive or costly. The 

integration of AI into pavement engineering is evolving these methods by significantly 

reducing time and increasing efficiency. In this thesis, the application of different 

models is investigated in order to best predict pavement roughness index values. Four 

AI-based models were developed and trained using pavement roughness index data 

to identify sequences and generate reliable predictions of roughness index values. The 

models incorporate various machine learning algorithms to analyze the 

measurements taken on the road section under study. The comparative analysis of 

the models' performance highlights the advantages and limitations of each approach, 

demonstrating the potential of Artificial Intelligence-based methodologies for 

predicting pavement behaviour through individual characteristics such as roughness. 
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ΠΙΝΑΚΑΣ ΑΚΡΩΝΥΜΙΩΝ 

Ακρωνύμιο Περιγραφή 

AI Artificial Intelligence – Τεχνητή Νοημοσύνη 

ML Machine Learning – Μηχανές Μάθησης 

ANN Artificial Neural Network – Τεχνητό Νευρωνικό Δίκτυο 

MLPNN Multi-layer Perceptron Neural Network – Νευρωνικά 
Δίκτυα Τροφοδότησης 

CNN Convolutional Neural Network - Συνελικτικά Νευρωνικά 
Δίκτυα 

RNN Recurrent Neural Network - Επαναλαμβανόμενα 
Νευρωνικά Δίκτυα 

CBR California Bearing Ratio 

AASHTO American Association of Highway and Transportation 
Officials 

ESAL Equivalent Single Axle Load-Ισοδύναμο Φορτίο Μονού 
Άξονα 

FWD Falling Weight Deflectometer-Παραμορφωσιμόμετρο 
Πίπτοντος Βάρους 

YOLO You only look once Νευρωνικό Δίκτυο 

SSD Single Shot Multibox Detector 

IRI  International Roughness Index – Διεθνής Δείκτης 
Ομαλότητας 

SMAPE Symmetric Mean Absolute Percentage Error - Συμμετρικό 
Μέσο Απόλυτο Ποσοστιαίο Σφάλμα  

RMSPE Root Mean Squared Percent Error – Μέσο Τετραγωνικό 
Ποσοστιαίο Σφάλμα 
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1. ΕΙΣΑΓΩΓΗ 

1.1 Αντικείμενο 

Η Τεχνητή Νοημοσύνη (Artificial Intelligence – AI) αποτελεί αναμφίβολα μία από τις 

μεγαλύτερες τεχνολογικές καινοτομίες της εποχής, καθώς επηρεάζει και 

αναδιαμορφώνει πλέον την εικόνα σε ποικίλους τομείς της κοινωνίας. Ειδικότερα, 

στον τομέα της μηχανικής των οδοστρωμάτων, η εισαγωγή της Τεχνητής Νοημοσύνης 

σε υφιστάμενες μεθόδους σχεδιασμού, κατασκευής και συντήρησης των 

οδοστρωμάτων παρουσιάζει όλο και περισσότερο ενδιαφέρον με το πέρασμα των 

ετών, προσφέροντας νέες δυνατότητες στις δραστηριότητες αυτές. Δημιουργούνται 

προοπτικές μείωσης κόστους, αύξησης της αποδοτικότητας και γενικότερα 

βελτίωσης της βιωσιμότητας των οδοστρωμάτων και ευρύτερα των έργων 

συγκοινωνιακής υποδομής (Huang, et al., 2019). 

Οι υφιστάμενες μέθοδοι σχεδιασμού και κατασκευής των οδοστρωμάτων βασίζονται 

σε ποικίλα δεδομένα όπως ο κυκλοφοριακός φόρτος, οι κλιματικές συνθήκες οι 

οποίες επικρατούν ή οι μηχανικές ιδιότητες του εδάφους (Λοΐζος & Πλατή, 2021). Τα 

μοντέλα μηχανικής μάθησης τα οποία ολοένα και εξελίσσονται αποτελούν μία 

εναλλακτική στις διαδικασίες αυτές προσφέροντας αποτελέσματα σε μικρό χρονικό 

διάστημα ενσωματώνοντας νέες τεχνολογίες. Η ανάλυση μίας μεγάλης βάσης 

δεδομένων με στοιχεία για τα οδοστρώματα μπορεί να οδηγήσει ένα μοντέλο 

Τεχνητής Νοημοσύνης στη δημιουργία προβλέψεων για τη μελλοντική κατάσταση 

του και τη διάρκεια ζωής του.  

Πολύ σημαντική κρίνεται και η συμβολή της Τεχνητής Νοημοσύνης στην αξιολόγηση 

και συντήρηση των οδοστρωμάτων, εφόσον μέχρι τώρα απαιτούνται επί τόπου 

επιθεωρήσεις με κοστοβόρα και χρονοβόρα μέσα μετρήσεων. Οι νέες τεχνολογίες 

που δημιουργούνται, δίνουν τη δυνατότητα μέσα από εικόνες που λαμβάνονται από 

οποιαδήποτε συσκευή να ανιχνεύονται οι θέσεις φθοράς και ρωγμών με εξαιρετικά 

μεγάλη ταχύτητα (Yang & Shi, 2020). Έτσι, μπορεί να αναλυθεί ο τύπος και η 

κρισιμότητα των φθορών και να ιεραρχηθούν οι ανάγκες συντήρησης των 

οδοστρωμάτων. 

Συνοψίζοντας, η τεχνολογική αναβάθμιση που μπορεί να προσφέρει η Τεχνητή 

Νοημοσύνη στις παραδοσιακές μεθόδους σχεδιασμού και συντήρησης των 

οδοστρωμάτων αποτελεί μία δυνατότητα που δημιουργείται λόγω της ραγδαίας 

εξέλιξης της τεχνολογίας στη σημερινή εποχή. Μέσω της αυτοματοποίησης, της 

πρόβλεψης και της βιωσιμότητας δημιουργούνται συνθήκες για πιο ασφαλείς και πιο 

ανθεκτικές υποδομές στο μέλλον.  
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1.2 Στόχος – Μεθοδολογία  

Με δεδομένες τις δυνατότητες ενσωμάτωσης της Τεχνητής Νοημοσύνης στη 

μηχανική των οδοστρωμάτων, όπως αυτό καθίσταται σαφές και από τα παραπάνω, 

στόχος της παρούσας διπλωματικής εργασίας είναι η εξέταση και η ανάλυση του πως 

μπορεί να υπεισέλθει η Τεχνητή Νοημοσύνη στην αξιολόγηση και συντήρηση των 

οδοστρωμάτων. Έμπρακτα, μέσα από τη δημιουργία μοντέλων μηχανικής μάθησης, 

στόχος είναι η καλύτερη δυνατή προσέγγιση παραμέτρων αξιολόγησης και 

συγκεκριμένα της ομαλότητας των οδοστρωμάτων, καταδεικνύοντας έτσι την 

ακρίβεια και την ταχύτητα με την οποία μπορούν να υπολογιστούν οι δείκτες αυτοί, 

χωρίς την απαραίτητη μέτρηση επί τόπου. 

Για την επίτευξη του υπόψη στόχου, μετά από μία βιβλιογραφική ανασκόπηση 

σχετικά με την Τεχνητή Νοημοσύνη και τα διάφορα μοντέλα που βασίζονται σε 

αυτήν, αναπτύσσονται τέσσερα διαφορετικά μοντέλα μηχανικής μάθησης με γλώσσα 

προγραμματισμού Python. Αξιοποιούνται στοιχεία από τη βάση δεδομένων του 

Εργαστηρίου Οδοστρωμάτων του Εθνικού Μετσόβιου Πολυτεχνείου, τα οποία 

αφορούν δείκτες ομαλότητας που έχουν μετρηθεί για ένα οδικό τμήμα 

αυτοκινητόδρομου. Τα στοιχεία αυτά αφορούν δώδεκα έτη μετρήσεων και τα 

μοντέλα αυτά, προβλέπουν την τιμή του δείκτη ομαλότητας για το 13ο έτος, για το 

οποίο επίσης υπάρχουν ακριβείς καταγεγραμμένες μετρήσεις. 

Επιπρόσθετα, πραγματοποιείται στατιστική ανάλυση των δεδομένων τα οποία 

εξάγουν οι τέσσερις διαφορετικές μέθοδοι μοντελοποίησης. Συγκεκριμένα, τα 

δεδομένα αυτά συγκρίνονται με τις αντίστοιχες τιμές ομαλότητας που έχουν 

μετρηθεί. Η διαδικασία αυτή πραγματοποιείται μέσω της ποσοτικοποίησης και της 

αξιολόγησης των μεταξύ τους αποκλίσεων. 

Συνεπώς, προκύπτει η καλύτερη μέθοδος πρόβλεψης των δεικτών ομαλότητας και 

αναδεικνύεται η αξία ενσωμάτωσης της Τεχνητής Νοημοσύνης στον τομέα των 

συγκοινωνιακών υποδομών. 
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1.3 Δομή εργασίας 

Η παρούσα διπλωματική εργασία αποτελείται από εννέα κεφάλαια, 

συμπεριλαμβανομένου του παρόντος εισαγωγικού κεφαλαίου. 

Στο κεφάλαιο 2 αναλύονται σύμφωνα με τη διεθνή βιβλιογραφία οι όροι της 

Τεχνητής Νοημοσύνης και της δομής της και πραγματοποιείται ο διαχωρισμός τους 

στις διάφορες κατηγορίες τους. 

Στο κεφάλαιο 3 παρουσιάζονται οι τρόποι σχεδιασμού και κατασκευής των 

οδοστρωμάτων και μελετάται η ενσωμάτωση της Τεχνητής Νοημοσύνης σε αυτούς. 

Επιπλέον, αναλύεται η συνεισφορά της και στην αξιολόγηση της συμπεριφοράς των 

οδοστρωμάτων. 

Στο κεφάλαιο 4 αναλύεται διεξοδικά η διαδικασία με την οποία μέσω γλώσσας 

προγραμματισμού Python αναπτύσσονται τέσσερα μοντέλα τα οποία μπορούν να 

προβλέψουν μελλοντικούς δείκτες ομαλότητας των οδοστρωμάτων. 

Στο κεφάλαιο 5 πραγματοποιείται σύγκριση των τιμών δεικτών ομαλότητας που 

προέκυψαν ως προβλεπόμενες σε σχέση με τις μετρημένες τιμές και αξιολογείται η 

μεταξύ τους απόκλιση.  

Στο κεφάλαιο 6 συνοψίζονται τα συμπεράσματα της διπλωματικής εργασίας. 

Τέλος, στο κεφάλαιο 7 παρατίθεται το σύνολο της βιβλιογραφίας που 

χρησιμοποιήθηκε για την εκπόνηση της διπλωματικής εργασίας. 
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2. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 

2.1 Γενικά στοιχεία  

Ως τεχνητή νοημοσύνη (Artificial Intelligence - AI) ορίζεται η ικανότητα μίας μηχανής 

να αναπαράγει γνωστικές λειτουργίες του ανθρώπου, όπως είναι η μάθηση, ο 

σχεδιασμός, η επίλυση προβλημάτων και η λήψη αποφάσεων (Russell & Norvig, 

2010). Οι λειτουργίες αυτές διδάσκονται στους υπολογιστές μέσω των μηχανών 

μάθησης. 

Οι μηχανές μάθησης (Machine Learning - ML) αποτελούν πρακτικά ένα σύνολο 

εργαλείων που μέσω αυτών μπορεί να πραγματοποιηθεί η εκμάθηση σε υπολογιστές 

ως προς το πώς να διαχειρίζονται προβληματικές καταστάσεις παρέχοντας τους 

παραδείγματα από ορθούς τρόπους διαχείρισης (Teng & Gong, 2018). Χωρίς να 

προγραμματίζονται ρητά, δημιουργούν ένα ιστορικό μνήμης και αντιμετωπίζουν 

μελλοντικά συμβάντα με τρόπους οι οποίοι έχουν συμβάλλει στην αποτελεσματική 

αντιμετώπιση πρωτύτερων αντίστοιχων συμβάντων. Αποτελούν εργαλείο της 

Τεχνητής Νοημοσύνης και οι χρήστες της παρέχουν ολοένα και περισσότερα 

δεδομένα με στόχο την εξέλιξη της από ένα σημείο και μετά, χωρίς πρόσθετο 

προγραμματισμό. Κάποιες από τις πιο συνήθεις μορφές μηχανών μάθησης είναι οι 

μέθοδοι παλινδρόμησης (είτε γραμμικής είτε πολυωνυμικής), τα «Τυχαία Δέντρα» 

(Random Forests) και η Ενίσχυση Κλίσης (Gradient Boosting - GB). 

Μέσω της σταδιακής εξέλιξης των μηχανών μάθησης, δημιουργήθηκε μία περίπλοκη 

μαθηματική δομή η οποία ονομάστηκε Τεχνητό Νευρωνικό Δίκτυο (ANN). Τα 

νευρωνικά δίκτυα είναι ένας τύπος αλγόριθμου ML και αποτελούνται από επίπεδα 

διασυνδεδεμένων κόμβων/νευρώνων που επεξεργάζονται διάφορες πληροφορίες 

από ένα σύνολο από δεδομένα που εισάγονται και βάσει αυτού εξάγουν ένα 

αποτέλεσμα (Yang, et al., 2021). 

Ένα βασικό νευρωνικό δίκτυο έχει διασυνδεδεμένους τεχνητούς νευρώνες σε τρία 

επίπεδα: 

Επίπεδο εισόδου (input layer): Πρόκειται για το πρώτο επίπεδο σε ένα νευρωνικό 

δίκτυο που λαμβάνει τα αρχικά δεδομένα εισόδου. Οι κόμβοι εισόδου 

επεξεργάζονται τα δεδομένα αυτά, τα αναλύουν και τα μεταβιβάζουν στο επόμενο 

επίπεδο. 

Κρυμμένο επίπεδο (hidden layer): Τα κρυμμένα επίπεδα αποτελούν τα ενδιάμεσα 

επίπεδα ανάμεσα στο επίπεδο εισόδου και εξόδου και επιτελούν το μεγαλύτερο 
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μέρος του υπολογισμού. Ενδέχεται να υπάρχουν πολλά κρυμμένα επίπεδα σε ένα 

νευρωνικό δίκτυο. 

Επίπεδο εξόδου (output layer): Το επίπεδο εξόδου είναι το τελικό επίπεδο σε ένα 

νευρωνικό δίκτυο και οδηγεί στην έξοδο του δικτύου. Ο αριθμός των νευρώνων στο 

επίπεδο αυτό εξαρτάται από το εκάστοτε πρόβλημα που λύνεται. 

Η δομή αυτή αποτυπώνεται στην Εικόνα 2.1: 

 

Εικόνα 2.1 : Απεικόνιση βασικού νευρωνικού δικτύου 
Πηγή: (Marcelino, et al., 2021) 

 

Τα επίπεδα εισόδου δέχονται τα δεδομένα, τα επεξεργάζονται και τα διαμοιράζουν 

σε διάφορα κρυμμένα επίπεδα τα οποία εκτελούν τους υπολογισμούς και το τελικό 

συνολικό αποτέλεσμα, οδηγείται στα επίπεδα εξόδου. 

Γενικά, τα Νευρωνικά Δίκτυα χωρίζονται σε τρεις κατηγορίες: τα Δίκτυα 

Τροφόδότησης (Multi-layer Perceptron Neural Network- MLPNN), τα Συνελικτικά 

(Convolutional Neural Network - CNN)  και τα Επαναλαμβανόμενα (Recurrent Neural 

Network- RNN).  

Τα νευρωνικά δίκτυα τροφοδότησης ή διαφορετικά τα νευρωνικά δίκτυα 

πολυστρωματικής αντίληψης (MLPNN) αποτελούν τον πιο απλό τύπο νευρωνικού 

δικτύου. Περιλαμβάνει τα τρία (3) βασικά επίπεδα και οι πληροφορίες ρέουν μόνο 

προς μία κατεύθυνση, από την είσοδο στην έξοδο. Μπορούν να περιγράψουν τις 

περίπλοκες μη γραμμικές σχέσεις μεταξύ των μεταβλητών εισόδου και εξόδου 

ωστόσο η αδυναμία τους εντοπίζεται στο ότι αγνοούν τις αλληλεξαρτήσεις μεταξύ 

των μεταβλητών εισόδου (Shrestha & Mahmood, 2019). 

Τα συνελικτικά νευρωνικά δίκτυα (Convolutional Neural Network - CNN) έχουν 

σχεδιαστεί για την αναγνώριση και ταξινόμηση εικόνων και γενικότερα την 



 15 

απόσπαση πληροφοριών από δεδομένα 2D. Βασισμένα σε αρχές της γραμμικής 

άλγεβρας, εξάγουν χαρακτηριστικά και μοτίβα από μία φωτογραφία παράγοντας 

χάρτες χαρακτηριστικών με τις βασικές πληροφορίες κάθε εικόνας. Πολλά τέτοια 

νευρωνικά δίκτυα έχουν χρησιμοποιηθεί για ταξινόμηση και εντοπισμό αντικειμένων 

ή τμηματοποίηση περιπτώσεων σε ανίχνευση εικόνας (Krizhevsky, et al., 2012). 

Τα επαναλαμβανόμενα νευρωνικά δίκτυα (Recurrent Neural Network- RNN) έχουν 

σχεδιαστεί για να επεξεργάζονται διαδοχικά δεδομένα, όπως δεδομένα χρονοσειρών 

για την πραγματοποίηση προβλέψεων σχετικά με μελλοντικά αποτελέσματα και 

λαμβάνοντας υπ’ όψιν τις σχέσεις αλληλουχίας των μεταβλητών. Κάποιες από τις 

υποκατηγορίες των RNN είναι οι Long Short Time Memory και η Gated Recurrent Unit 

όπου χρησιμοποιούνται και στον τομέα των οδοστρωμάτων για να εντοπίσουν 

αποτελεσματικά τα μοτίβα φθοράς από τα δεδομένα χρονοσειράς (Chung, et al., 

2014). 

Στην Εικόνα 2.2 παρουσιάζεται ο διαχωρισμός των Νευρωνικών Δικτύων στις 

κατηγορίες που αναφέρθηκαν παραπάνω: 

 

 

Εικόνα 2.2 Ταξινόμηση των Νευρωνικών Δικτύων 
Πηγή: (Yang, et al., 2021) 

 

Τα MLPNN μπορεί να περιέχουν ένα κρυμμένο επίπεδο ή παραπάνω από ένα, τα CNN 

διαχωρίζουν τις εικόνες που δέχονται σε πολλά επίπεδα και εξάγουν το αποτέλεσμα 

τους ενώ τα RNN διατηρούν μια αλληλουχία μεταξύ των μεταβλητών τους. 
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2.2 Μέθοδοι Μηχανικής Μάθησης  

Έχουν αναπτυχθεί ποικίλοι και πολυπληθείς αλγόριθμοι μηχανικής μάθησης στο 

πέρασμα των ετών, ο καθένας για διαφορετικές περιπτώσεις με διαφορετικές βάσεις 

δεδομένων και διαφορετικούς τύπους προβλημάτων. Παρακάτω, θα αναπτυχθούν 

τέσσερα από τα πιο συνηθισμένα μοντέλα μηχανικής μάθησης τα οποία εμφανίζουν 

καλύτερη λειτουργικότητα σε διαφορετικά προβλήματα το καθένα. 

2.2.1 Μοντέλο Γραμμικής Παλινδρόμησης (Linear Regression)  

Η Γραμμική Παλινδρόμηση αποτελεί μία από τις πιο απλές και συχνές μαθηματικές 

φόρμουλες, πάνω στην οποία βασίζεται το μοντέλο μηχανικής μάθησης. Βασική 

υπόθεση της είναι ότι η ανεξάρτητη ή οι ανεξάρτητες μεταβλητές έχουν γραμμική 

σχέση με την εξαρτημένη μεταβλητή.  

Η σχέση μεταξύ των μεταβλητών είναι η ακόλουθη γραμμική εξίσωση: 

y=β0+β1x1+β2x2+⋯+βnxn+ϵ                                  (Σχ. 2.1) 

Όπου: 

y: Εξαρτημένη μεταβλητή  

x1, x2, …, xn: Ανεξάρτητες μεταβλητές  

β0: Τομή της γραμμής παλινδρόμησης  

β1,β2,…,βn: Συντελεστές ανεξάρτητων μεταβλητών 

ϵ: Σφάλμα που αντιπροσωπεύει τη μεταβλητότητα  

Οι συντελεστές των ανεξάρτητων μεταβλητών εκτιμώνται κατά τη διάρκεια της 

εκπαίδευσης προσπαθώντας το μοντέλο να προσαρμόσει μία ευθεία γραμμή που να 

ελαχιστοποιεί το άθροισμα των τετραγωνικών υπολοίπων μεταξύ πραγματικών και 

προβλεπόμενων τιμών. 

Η Γραμμική Παλινδρόμηση είναι ιδανική για βάσεις δεδομένων όπου η σχέση μεταξύ 

των μεταβλητών είναι περίπου γραμμική, ωστόσο δεν μπορεί να ανταποκριθεί το ίδιο 

ικανοποιητικά σε πολύπλοκα σύνολα δεδομένων με μη γραμμικά μοτίβα (Draper, et 

al., 1998). 
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2.2.2 Μοντέλο Πολυωνυμικής Παλινδρόμησης (Polynomial Regression) 

Στην Πολυωνυμική Παλινδρόμηση προσαρμόζεται μία πολυωνυμική εξίσωση στα 

δεδομένα, αντί της ευθείας γραμμής, επεκτείνοντας έτσι τη χρήση της Γραμμικής 

Παλινδρόμησης. 

Η εξίσωση αυτή είναι η: 

y=β0+β1x+β2x2+β3x3+⋯+βnxn+ϵ                   (Σχ. 2.2) 

Εισάγοντας πολυωνυμικούς όρους, το μοντέλο προσαρμόζει με μεγαλύτερη ευελιξία 

καμπύλες στα δεδομένα και δεν τα συνδέει με γραμμικές σχέσεις. 

Η μέθοδος αυτή είναι αποτελεσματική κυρίως όταν η σχέση μεταξύ των μεταβλητών 
δεν είναι γραμμική αλλά παρουσιάζει καμπυλότητα. Απαιτείται όμως προσεκτική 
επιλογή του βαθμού πολυωνύμου ο οποίος θα χρησιμοποιηθεί για να εξισορροπηθεί 
η διακυμανση (Ostertagova, 2012). 

 

2.2.3 Μοντέλο «Τυχαίων Δέντρων» (Random Forests) 

Τα «Τυχαία Δέντρα» είναι ένα μοντέλο μηχανικής μάθησης που κατά την εκπαίδευση 

του κατασκευάζεται μία συλλογή «δέντρων αποφάσεων» (decision trees) και 

συγκεντρώνονται οι μεταβλητές εξόδου τους για να πραγματοποιηθεί μία πρόβλεψη. 

Το μοντέλο είναι ιδιαίτερα αποτελεσματικό για σύνθετα σύνολα με συνδυασμό 

διαφορετικών χαρακτηριστικών. Η μέθοδος αυτή μειώνει τον κίνδυνο της 

υπερπροσαρμογής (overfitting) χρησιμοποιώντας τον μέσο όρο πολλαπλών δέντρων, 

καθένα από τα οποία εκπαιδεύεται σε τυχαίο υποσύνολο των δεδομένων. Λειτουργεί 

ικανοποιητικά με μη γραμμικές σχέσεις και καταγράφει αλληλεπιδράσεις μεταξύ των 

μεταβλητών. 

Σύμφωνα με τους (Liu, et al., 2012), ο αλγόριθμος είναι εξαιρετικά αποτελεσματικός 

λόγω της τυχαίας επιλογής χαρακτηριστικών για τη μορφή κάθε δέντρου, 

δημιουργώντας ποικιλομορφία στο σύνολο και οδηγώντας σε καλύτερη γενίκευση. 

Αποδίδει εξαιρετικά καλά σε μεγάλα σύνολα με ελλιπή ή περίπλοκα δεδομένα. Όσο 

μεγαλύτερος είναι ο αριθμός των δέντρων που δημιουργείται, τόσο πιο δύσκολο 

είναι να οδηγηθεί σε υπερπροσαρμογή το μοντέλο. 

Στην Εικόνα 2.3, αναπαρίσταται η δομή του μοντέλου «Τυχαίων Δέντρων». 



 18 

 

Εικόνα 2.3 Σχηματική Αναπαράσταση των Random Forests 
Πηγή: (Liu, et al., 2012) 

Ένα αρχικό σύνολο δεδομένων T εισάγεται για να εκπαιδεύσει το μοντέλο και με 

τυχαία επιλογή δημιουργεί τα υποσύνολα Τ1,Τ2,…,Τi. Τα υποσύνολα αυτά 

δημιουργούν με τη σειρά τους τα λεγόμενα «δέντρα» Tree 1, Tree 2,…,Tree k τα οποία 

οδηγούν σε αντίστοιχα αποτελέσματα. Αφού έχουν εξαχθεί όλα τα αποτελέσματα 

των υποσυνόλων, όλα αυτά συγκλίνουν στη δημιουργία του τελικού ολικού 

αποτελέσματος. 

2.2.4 Μοντέλο Ενίσχυσης Κλίσης (Gradient Boosting) 

Το Μοντέλο Ενίσχυσης Κλίσης βασίζεται σε ένα δημοφιλή αλγόριθμο ενίσχυσης 

(boosting) στη μηχανική μάθηση που χρησιμοποιείται για εργασίες ταξινόμησης και 

παλινδρόμησης. Η ενίσχυση είναι ένα είδος μεθόδου μάθησης συνόλου που 

εκπαιδεύει το μοντέλο διαδοχικά και κάθε νέο μοντέλο προσπαθεί να διορθώσει το 

προηγούμενο μοντέλο. Συνδυάζει διάφορους αδύναμους εκπαιδευόμενους (weak 

learners) και τους μετατρέπει σε ισχυρούς εκπαιδευόμενους (strong learners).  

Kάθε νέο μοντέλο εκπαιδεύεται για να ελαχιστοποιήσει τη συνάρτηση απώλειας, 

όπως το μέσο τετραγωνικό σφάλμα ή η διασταυρούμενη εντροπία του 

προηγούμενου μοντέλου, χρησιμοποιώντας την κάθοδο κλίσης. Σε κάθε επανάληψη, 

ο αλγόριθμος υπολογίζει την κλίση της συνάρτησης απώλειας σε σχέση με τις 

προβλέψεις του τρέχοντος συνόλου και στη συνέχεια εκπαιδεύει ένα νέο αδύναμο 

μοντέλο για να ελαχιστοποιήσει αυτή την κλίση. Οι προβλέψεις του νέου μοντέλου 

προστίθενται στη συνέχεια στο σύνολο και η διαδικασία επαναλαμβάνεται μέχρι να 

ικανοποιηθεί ένα κριτήριο διακοπής. 

Τα αποτελέσματα των περιπτώσεων εκπαίδευσης δεν τροποποιούνται, αντίθετα, 

κάθε πρόβλεψη εκπαιδεύεται χρησιμοποιώντας τα εναπομείναντα σφάλματα του 

προηγούμενου ως ετικέτες. Υπάρχει μια τεχνική που ονομάζεται Δέντρα Ενίσχυσης 

Κλίσης (Gradient Boosted Trees) της οποίας ο βασικός δέκτης είναι το CART 

(Classification and Regression Trees). 
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Η σχηματική διάταξη στην Εικόνα 2.4 εξηγεί τον τρόπο με τον οποίο εκπαιδεύονται 

τα Δέντρα Ενίσχυσης Κλίσης για προβλήματα παλινδρόμησης. 

 

 

Εικόνα 2.4 Εκπαίδευση Δέντρων Ενίσχυσης Κλίσης 
Πηγή: (Natekin & Alexey, 2013) 

 

Το σύνολο αποτελείται από Ν δέντρα. Το Tree 1 εκπαιδεύεται χρησιμοποιώντας τον 

πίνακα χαρακτηριστικών X και τις ετικέτες y. Οι προβλέψεις με την ετικέτα y1 

χρησιμοποιούνται για τον προσδιορισμό των υπολειμματικών σφαλμάτων r1 του 

συνόλου εκπαίδευσης. Το Tree 2 εκπαιδεύεται στη συνέχεια χρησιμοποιώντας τον 

πίνακα χαρακτηριστικών X και τα υπολειμματικά σφάλματα r1 του Tree 1 ως ετικέτες. 

Τα αποτελέσματα πρόβλεψης r1 χρησιμοποιούνται στη συνέχεια για τον 

προσδιορισμό του  r2. Η διαδικασία επαναλαμβάνεται έως ότου εκπαιδευτούν και τα 

Ν δέντρα που αποτελούν το σύνολο. Υπάρχει μια σημαντική παράμετρος που 

χρησιμοποιείται σε αυτή την τεχνική και είναι γνωστή ως συρρίκνωση (shrinkage). Η 

συρρίκνωση αναφέρεται στο γεγονός ότι η πρόβλεψη κάθε δέντρου του συνόλου 

συρρικνώνεται αφού πολλαπλασιαστεί με το ρυθμό μάθησης που κυμαίνεται μεταξύ 

0 και 1. Υπάρχει συμβιβασμός μεταξύ του ρυθμού μάθησης και του αριθμού των 

εκτιμητών και η μείωση του ρυθμού μάθησης πρέπει να αντισταθμίζεται με αύξηση 

των εκτιμητών προκειμένου να επιτευχθεί ορισμένη απόδοση του μοντέλου. 

Η μέθοδος αυτή είναι ιδιαίτερα ευέλικτη και συχνά ξεπερνά άλλες σε ακρίβεια, ειδικά 

για δομημένα δεδομένα. Είναι υπολογιστικά πιο εντατική από τα «Τυχαία Δέντρα», 

αλλά χρησιμοποιείται συνήθως όπου η υψηλή προβλεπτική ικανότητα είναι κρίσιμη 

(Natekin & Alexey, 2013). 
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2.3 Προκλήσεις – Ηθικοί Προβληματισμοί 

Η χρήση της Τεχνητής Νοημοσύνης δεν είναι πάντα εντελώς ακίνδυνη και συχνά 

δημιουργεί προκλήσεις οι οποίες πρέπει να αντιμετωπιστούν έτσι ώστε να 

αξιοποιηθούν πλήρως τα τεχνολογικά οφέλη της.  

2.3.1 Τεχνικές προκλήσεις 

Τα συστήματα Τεχνητής Νοημοσύνης για να είναι λειτουργικά και αποτελεσματικά 

χρειάζονται έναν αρκετά μεγάλο όγκο δεδομένων υψηλής ποιότητας τα οποία μπορεί 

να παρουσιάζουν έντονη μεταβλητότητα και να μην είναι διαρκώς τα ίδια. Τα ελλιπή 

ή ανεπαρκή δεδομένα μπορεί να οδηγήσουν σε ανακρίβειες κατά την εξαγωγή 

αποτελεσμάτων από τους αλγορίθμους και να μην συνεισφέρουν ουσιαστικά στους 

υπολογισμούς.  

Η ενσωμάτωση της Τεχνητής Νοημοσύνης σε συνήθεις πρακτικές μπορεί να είναι 

δύσκολη, απαιτώντας σημαντικές τροποποιησεις. Για το λόγο αυτό, είναι σημαντική 

η προσεκτική διαχείριση έτσι ώστε να αποφευχθούν ενδεχόμενα σφάλματα. 

Τέλος, καθώς οι βάσεις δεδομένων αποτελούν το βασικό εργαλείο με το οποίο 

εκπαιδεύεται η Tεχνητή Nοημοσύνη, τίθενται θέματα ασφαλείας στον κυβερνοχώρο. 

Πρέπει να προλαμβάνεται η μη εξουσιοδοτημένη πρόσβαση με στόχο να μην 

μπορούν να παραβιαστούν δεδομένα και να τεθεί σε αμφισβήτηση η ακεραιότητα 

των αποτελεσμάτων. 

 

2.3.2 Πρακτικές προκλήσεις 

Η ανάπτυξη τεχνολογιών τεχνητής νοημοσύνης μπορεί να οδηγήσει στην 

εξοικονόμηση χρόνου ωστόσο απαιτείται επένδυση σε υλικό, λογισμικό και 

κατάρτιση. Τα έξοδα αυτά, μπορεί να μην είναι βιώσιμα για μικρότερους 

οργανισμούς. 

Σημαντικές είναι λοιπόν και οι εξειδικευμένες γνώσεις και δεξιότητες πάνω στον 

συγκεκριμένο τομέα. Η επιστήμη της ανάλυσης δεδομένων είναι ιδιαίτερα σημαντική 

για την κατανόηση των αποτελεσμάτων και γι΄ αυτό είναι απαραίτητη η εκπαίδευση 

και η κατάρτιση των ενασχολούμενων μηχανικών. 

Μία ακόμα πρόκληση στην πράξη είναι ότι τα μοντέλα που αναπτύσσονται έχουν ως 

βάση τους κάποιες συγκεκριμένες συνθήκες, οι οποίες όμως διαφέρουν σημαντικά 

από άλλες υφιστάμενες συνθήκες. Tα μοντέλα καλούνται να προσαρμόζονται σε 

αυτές τις ποικίλες συνθήκες, κάτι το οποίο απαιτεί συνεχή ενημέρωση και 

εκτεταμένη εξατομίκευση. 
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2.3.3 Οργανωτικές προκλήσεις 

Πολύ σημαντική είναι η τήρηση της νομοθεσίας η οποία εξελίσσεται χρονικά 

συνεχώς, έτσι ώστε να συμβαδίζει με τις τεχνολογικές εξελίξεις. Πρέπει οι οι μηχανές 

μάθησης να εξάγουν αποτελέσματα τα οποία θα συμβαδίζουν με τους κανόνες και 

τα πρότυπα (Okem, et al., 2023). 

 

2.3.4 Ηθικοί προβληματισμοί 

Τα ανακριβή δεδομένα μπορούν να οδηγήσουν σε αθέμιτη κατανομή πόρων και να 

δώσουν προτεραιότητα σε ορισμένες παραμέτρους έναντι άλλων χωρίς 

αιτιολογημένους λόγους. Είναι σημαντικό να διασφαλιστεί ότι τα συστήματα 

Τεχνητής Νοημοσύνης επιλέγουν δίκαια και αμερόληπτα  για τη διατήρηση της 

ισότητας και ότι συλλέγουν και μπορούν να αξιολογήσουν την σωστή από την λάθος 

πληροφορία. 

Οι διαδικασίες λήψης αποφάσεων για την Τεχνητή Νοημοσύνη μπορεί να είναι 

ασαφείς, καθιστώντας δύσκολη την κατανόηση του τρόπου με τον οποίο εξάγονται 

ορισμένα συμπεράσματα. Αυτή η έλλειψη διαφάνειας μπορεί να οδηγήσει σε 

ζητήματα λογοδοσίας ή να δημιουργηθεί πρόβλημα με την απόδοση ευθυνών. 

Κρίνεται αναγκαίο να αναπτυχθούν συστήματα Τεχνητής Νοημοσύνης που μπορούν 

να εξηγήσουν την πορεία ανάλυσης για να μπορέσουν τα ενδιαφερόμενα μέρη να 

κατανοήσουν και να εμπιστευτούν τις αποφάσεις που λαμβάνονται από αυτά τα 

συστήματα. 

Ένα πολύ σημαντικό πρόβλημα που δημιουργείται με την ανάπτυξη της Τεχνητής 

Νοημοσύνης είναι η μετακίνηση θέσεων απασχόλησης. Οι εργαζόμενοι που 

ασχολούνται με τακτικά καθήκοντα ενδέχεται να διαπιστώσουν ότι οι ρόλοι τους 

μειώνονται ή εξαλείφονται. Η αντιμετώπιση αυτών των ανησυχιών μπορεί να 

πραγματοποιηθεί μέσω προγραμμάτων επανεκπαίδευσης και δημιουργίας νέων 

ευκαιριών έτσι ώστε οι παλιές τους αρμοδιότητες να μπορούν να αντικατασταθούν 

με νέες (Kazim & Koshiyama, 2021). 

 

2.3.5 Πιθανοί κίνδυνοι 

Ενώ η χρήση Τεχνητής Νοημοσύνης μπορεί να ενισχύσει σημαντικά τη λήψη 

αποφάσεων, δεν μπορεί να δίνεται υπερβολική εμπιστοσύνη σε τέτοια συστήματα 

χωρίς επαρκή ανθρώπινη εποπτεία καθώς είναι επικίνδυνη. 

Η εκτεταμένη χρήση των δεδομένων στα συστήματα Τεχνητής Νοημοσύνης 

χρειάζεται να εξετάζεται προσεκτικά όσον αφορά το απόρρητο των στοιχείων και τη 

διασφάλιση ηθικής και ορθολογικής χρήσης.  
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Εάν τα συστήματα Τεχνητής Νοημοσύνης δεν υλοποιούνται σωστά, μπορούν να 

οδηγήσουν σε σημαντικά σφάλματα. Τέτοιες λάθος εκτιμήσεις μπορούν να 

οδηγήσουν σε καθυστερήσεις οι οποίες είναι επιζήμιες οικονομικά και χρονικά 

(Steimers & Schneider, 2022).  
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3. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΚΑΙ  

ΟΔΟΣΤΡΩΜΑΤΑ  

3.1 Γενικά 

Ο σωστός σχεδιασμός του οδοστρώματος, η επιλογή πάχους, ο κατάλληλος 

συνδυασμός των σωστών υλικών και αναλογιών και στη συνέχεια η κατασκευή και η 

διαρκής παρακολούθηση, αξιολόγησή και πρόβλεψη των μελλοντικών φθορών του  

αποτελούν τη μεγαλύτερη πρόκληση στη μηχανική των οδοστρωμάτων. Οι 

διαδικασίες αυτές, με τις υπάρχουσες μεθόδους υπολογισμού συχνά μπορεί να είναι 

χρονοβόρες και να απαιτούν αρκετά μεγάλη προσπάθεια για να εξαχθούν τα 

αποτελέσματα. Η ανάπτυξη της Τεχνητής Νοημοσύνης μπορεί να συμβάλλει 

σημαντικά τόσο στον σχεδιασμό νέων οδοστρωμάτων, όσο και στην αξιολόγηση 

υφιστάμενων. 

Έχουν αρχίσει ήδη να κατασκευάζονται και να χρησιμοποιούνται μοντέλα μηχανικής 

μάθησης, τα οποία επιταχύνουν τις διαδικασίες, αυξάνουν την αποτελεσματικότητα 

και την ακρίβεια των υπολογισμών και απλοποιούν σε μεγάλο βαθμό τις διαδικασίες 

σχεδιασμού των οδοστρωμάτων. Επίσης, μέσα από τη χρήση των εξελιγμένων 

νευρωνικών δικτύων, έχουν αναπτυχθεί νέοι τρόποι αυτόματης καταγραφής και 

αξιολόγησης φθορών οδοστρώματος, οι οποίοι ενσωματώνουν μοντέλα πρόβλεψης 

τα οποία δίνουν αποτελέσματα με μεγάλη ακρίβεια, βοηθώντας έτσι τους μελετητές 

να σχεδιάζουν την αντιμετώπιση της φθοράς, πριν καν εμφανιστεί. 

3.2 Σχεδιασμός οδοστρωμάτων 

Κατά τη διάρκεια σχεδιασμού των οδοστρωμάτων διαχρονικά, έχουν αναπτυχθεί 

διάφορες εμπειρικές και αναλυτικές μέθοδοι σχεδιασμού.  

Οι εμπειρικές μέθοδοι βασίζονται στα αποτελέσματα πειραμάτων ή παρατηρήσεων. 

Η σχέση μεταξύ των παραμέτρων σχεδιασμού και της αστοχίας του οδοστρώματος 

προέρχεται μέσω της εμπειρίας, πειραμάτων ή συνδυασμό και των δύο. Κατά τον 

εμπειρικό σχεδιασμό ενός οδοστρώματος, τα απαιτούμενα πάχη των επιμέρους 

στρώσεων του οδοστρώματος καθορίζονται συνήθως μέσω της χρήσης 

διαγραμμάτων ή νομογραφημάτων (Λοΐζος & Πλατή, 2021).  

Η πλέον διαδεδομένη και χρησιμοποιούμενη μέθοδος σχεδιασμού είναι η μέθοδος 

AASHTO 93(American Association of Highway and Transportation Officials). Η 

μέθοδος AASHTO 93 είναι αυτή που χρησιμοποιείται ευρέως στον σχεδιασμό 
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οδοστρωμάτων εδώ και αρκετές δεκαετίες. Αναπτύχθηκε το 1993 από την 

Αμερικανική Ένωση Κρατικών Αυτοκινητοδρόμων και Μεταφορών και βασίζεται στα 

αποτελέσματα της Δοκιμής AASHTO (1958-1960), η οποία καθόρισε τη σχέση μεταξύ 

της απόδοσης του οδοστρώματος, των κυκλοφοριακών φορτίων και των ιδιοτήτων 

των υλικών. Βασίζεται σε πραγματικές συνθήκες πεδίου οι οποίες διαρκώς 

μεταβάλλονται και προσαρμόζονται στα νέα δεδομένα (Abdollahi, et al., 2023). 

Ωστόσο, η μέθοδος AASHTO 93 έχει περιορισμούς, δεδομένου ότι ικανοποιεί µόνο 

την απαίτηση λειτουργικότητας και δεν μπορεί να χρησιμοποιηθεί για την πρόβλεψη 

διαφόρων μορφών φθοράς του οδοστρώματος.  Συνολικά, η εξέλιξη της μεθόδου 

AASHTO 93 αντανακλά μια στροφή προς πιο εξελιγμένα μοντέλα που λαμβάνουν 

υπόψη ένα ευρύτερο φάσμα παραγόντων που επηρεάζουν την απόδοση του 

οδοστρώματος, βελτιώνοντας έτσι την ακρίβεια και την αξιοπιστία του σχεδιασμών 

οδοστρωμάτων (Mamlouk, et al., 2000). 

Οι αναλυτικές μέθοδοι σχεδιασμού των οδοστρωμάτων βασίζονται σε μαθηματικά 

μοντέλα και αρχές της μηχανικής για την πρόβλεψη της απόδοσης των 

οδοστρωμάτων. Αναλύονται οι τάσεις και  οι  παραμορφώσεις  που  αναπτύσσονται 

σε  διάφορες  κρίσιμες  θέσεις  της  δομής  ενός οδοστρώματος υπό  την  επίδραση  

της  κυκλοφορίας και  των  περιβαλλοντικών  συνθηκών.  

Η μέθοδος του Odemark, η οποία αποτελεί την επικρατέστερη θεώρηση για τον 

υπολογισμό των οδοστρωμάτων, βασίζεται στην παραδοχή ότι οι τάσεις και οι 

παραμορφώσεις που αναπτύσσονται κάτω από μία στρώση εξαρτώνται μόνο από την 

ακαμψία της στρώσης αυτής. Αν το πάχος και τα μηχανικά χαρακτηριστικά (μέτρο 

ελαστικότητας και λόγος του Poisson) μιας στρώσης μεταβληθούν αλλά η  ακαμψία  

παραμείνει  σταθερή,  τότε  οι  αναπτυσσόμενες  τάσεις  και  παραμορφώσεις  κάτω  

από  τη στρώση  αυτή  θα  παραμένουν  αμετάβλητες.  Σημειώνεται ότι η ακαμψία  

μιας  στρώσης  δίνεται από τη Σχέση 3.1: 

ℎ3×𝐸

1−𝜈2
                 (Σχ. 3.1) 

Όπου h είναι το πάχος της στρώσης, Ε το μέτρο ελαστικότητας της στρώσης και v ο 

λόγος του Poisson.  

Στις υφιστάμενες αυτές μεθόδους σχεδιασμού των ασφαλτομιγμάτων αλλά και 

κατασκευής των οδοστρωμάτων, προστίθενται σταδιακά νέες τεχνολογίες μέσω της 

Τεχνητής Νοημοσύνης, οι οποίες προσφέρουν έναν εναλλακτικό τρόπο ανάλυσης και 

υπολογισμών. 

Οι (Commuri & Zaman, 2008) είχαν ως στόχο την εύρεση κατάλληλων εργαλείων τα 

οποία θα προσδιορίζουν σε πραγματικό χρόνο την πυκνότητα του εδάφους ή του 

ασφαλτομίγματος κατά τη διάρκεια της συμπύκνωσης (Eυφυής συμπύκνωση-

Intelligent compaction). Με αυτόν τον τρόπο, πραγματοποίησαν ένα 
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αυτοματοποιημένο επίπεδο ταξινόμησης για τη συμπύκνωση οδοστρώματος, η 

οποία εξήγαγε τα βασικά χαρακτηριστικά των σημάτων δόνησης ως μεταβλητές 

εισόδου του Νευρωνικού Δικτύου. Όπως φαίνεται και στην Εικόνα 3.1, προέκυψε ότι 

οι δονήσεις του συμπιεστή εξαρτώνται από την πυκνότητα του στρώματος και τις 

παραμέτρους της διαδικασίας και ο αναλυτής συμπίεσης μπορεί σε πραγματικό 

χρόνο να προβλέπει την πυκνότητα. 

 

 

 

Εικόνα 3.1 Πρόβλεψη διαφορετικών πυκνοτήτων 
Πηγή: (Commuri & Zaman, 2008) 

  

Οι (Saffarzadeh & Heidaripanah, 2009) προσομοίωσαν τη διαδικασία σχεδιασμού 

ασφαλτομίγματος με τη μέθοδο Marshall με διαφορετικές περιεκτικότητες σε 

άσφαλτο μέσω ενός δικτύου MLPNN 8-8-1. Χρησιμοποιήθηκαν ογδόντα πέντε σημεία 

δεδομένων για την εκπαίδευση και 25 για τη διασταύρωση πληροφοριών. Η 

διακύμανση της δοκιμής Marshall με την περιεκτικότητα σε άσφαλτο εκτιμήθηκε με 

μια ευαίσθητη ανάλυση χρησιμοποιώντας το σχεδιασμένο Νευρωνικό Δίκτυο και τα 

αποτελέσματα ανταποκρίνονταν ικανοποιητικά με τη θεωρία.  

Καθίσταται εμφανές και από την Εικόνα 3.2 ότι για ένα δίκτυο συγκεκριμένου 

αριθμού νευρώνων, μειώνοντας το σφάλμα εκπαίδευσης η ικανότητα γενίκευσης του 

δικτύου αυξάνεται όσο φτάνει στη μέγιστη τιμή της. 
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Εικόνα 3.2 Μεταβολή της ικανότητας προσομοίωσης με σφάλμα εκπαίδευσης 
Πηγή: (Saffarzadeh & Heidaripanah, 2009) 

 

Ο (Xiao F., 2009) ανέπτυξε διάφορα Νευρωνικά Δίκτυα για την πρόβλεψη του ιξώδους 

διαφόρων συνδετικών υλικών σε τρεις διάρκειες ανάμιξης. Εκπαιδεύτηκε ένα δίκτυο 

4-3-1 MLPNN με βάση το ML με πειραματικά δεδομένα. Από 216 σημεία δεδομένων 

που περιείχαν τρεις πηγές υλικού, επιλέχθηκαν 162 για να εκπαιδεύσουν το μοντέλο 

και τα υπόλοιπα για να επικυρώσουν αν είναι ορθά τα αποτελέσματα. Όπως μπορεί 

να πιστοποιηθεί από την Εικόνα 3.3, η ποιότητα της πρόβλεψης του Νευρωνικού 

Δικτύου ήταν αρκετά ικανοποιητική. 

 

Εικόνα 3.3 Επιδόσεις ANN με το μοντέλο Xiao 
Πηγή: (Xiao F., 2009) 

 

Οι (Abo & Hashema, 2013) αναζητούσαν ένα μοντέλο πρόβλεψης της θερμοκρασιίας 

της ασφάλτου καθώς αυτή διαδραματίζει σημαντικό ρόλο στο μέτρο ελαστικότητας 



 27 

και στην αντοχή του οδοστρώματος. Έτσι, ανέπτυξε δύο μοντέλα Νευρωνικών 

Δικτύων και τα δεδομένα της θερμοκρασίας του οδοστρώματος και ορισμένες άλλες 

σχετικές παράμετροι έχουν ληφθεί αριθμητικά (690 σημεία δεδομένων).  Το πρώτο 

μοντέλο (First Group, All Data) λαμβάνει δεδομένα από τη θερμοκρασία του αέρα 

συμπεριλαμβάνοντας και άλλες θερμοκρασιακές παραμέτρους ενώ το δεύτερο 

μοντέλο (Second Group, only Air Temp.) ασχολείται μόνο με τη θερμοκρασία του 

αέρα. Τα αποτελέσματα τους αποτυπώνονται στην Εικόονα 3.4. 

 

Εικόνα 3.4 Προβλεπόμενες θερμοκρασίες οδοστρώματος 
Πηγή: (Abo & Hashema, 2013) 

 

Το μοντέλο 4-25-25-1 MLPNN επιλέχθηκε ως το καταλληλότερο μετά από ανάλυση 

ευαισθησίας, έχοντας αποδώσει μέση ακρίβεια 81% στο στάδιο επικύρωσης. Και τα 

δύο μοντέλα έδωσαν ικανοποιητικά αποτελέσματα, κάτι το οποίο είναι ιδιαίτερα 

χρήσιμο όταν δεν υπάρχουν διαθέσιμα πολλά δεδομένα για μεταβλητές εισόδου. 

Για την εκτίμηση των Ισοδύναμων Τυπικών Αξόνων (ESAL - Estimated Single Axle Load) 

ο (Tigdemir, 2014) προσπάθησε χρησιμοποιώντας ένα δίκτυο MLPNN να 

δημιουργήσει μία σχέση μεταξύ των ESAL και της δομής του οδοστρώματος. 

Αναπτύχθηκαν δύο μοντέλα Νευρωνικών Δικτύων με δύο διαφορετικούς 

αλγόριθμους και οι επιδόσεις τους συγκρίθηκαν με τα αποτελέσματα που 

υπολογίστηκαν με τη χρήση της μεθόδου AASHTO 93. Το μοντέλο που αναπτύχθηκε 

έδωσε συντελεστές συσχέτισης 0,999 και 0,976 (Εικόνα 3.5) αποδεικνύοντας ότι είναι 

ένα ισχυρό εργαλείο για την πρόβλεψη των τυπικών φορτίων. Το μοντέλο αυτό 

αναπαριστά τα δεδομένα με σχετικά μεγαλύτερη ακρίβεια από αυτή των 
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αποτελεσμάτων της μεθόδου AASHTO 93, η οποία πολλές φορές εξάγει 

συμπερέσματα κάνοντας μία υπερεκτίμηση των Ισοδύναμων Τυπικών Αξόνων (ESAL). 

 

 

Εικόνα 3.5 Διάγραμμα παλινδρόμησης προβλέψεων με χρήση ΑΝΝ 
Πηγή: (Tigdemir, 2014) 

 

Οι (Ozturk & Kutay, 2014) προσπάθησαν να χρησιμοποιήσουν την Τεχνητή 

Νοημοσύνη για τον σχεδιασμό ενός κοινού τύπου ασφαλτομίγματος στις ΗΠΑ. 

Εισήγαγαν ένα μοντέλο Νευρωνικών ΔΙκτύων για την πρόβλεψη των ιδιοτήτων 

σχεδιασμού του ασφαλτομίγματος, όπως το ποσοστό των κενών αέρα σε 

διαφορετικά επίπεδα περιστροφής και το μέγιστο ειδικό βάρος. Το σύνολο 

δεδομένων που χρησιμοποιήθηκε περιλαμβάνει 1617 συνθέσεις μίγματος που 

επιλέχθηκαν τυχαία για εκπαίδευση και 200 για επικύρωση. Η δομή του Νευρωνικού 

Δικτύου επιλέχθηκε μετά από 800 δοκιμές, με το δίκτυο MLPNN 18-300-300-600-4 να 

είναι το επικρατέστερο. Ήταν σε θέση να παράγει ικανοποιητικά αποτελέσματα και 

να εξοικονομεί τουλάχιστον 3-6 ημέρες στη διαδικασία σχεδιασμού.  

3.3 Αξιολόγηση συμπεριφοράς οδοστρωμάτων 

Το σημείο «μηδέν» του οδοστρώματος είναι η χρονική στιγμή κατά την οποία τίθεται 

σε λειτουργία και ξεκινάει να υφίσταται καταπονήσεις. Είναι το σημείο αναφοράς για 

την περιοδική καταγραφή και αξιολόγηση της κατάστασής του μέσω ενός 

Συστήματος Παρακολούθησης (Λοΐζος & Πλατή, 2021). 

Η αξιολόγηση της συμπεριφοράς των οδοστρωμάτων πραγματοποιείται έως τώρα 

είτε με οπτική επισκόπηση του οδοστρώματος, είτε με αξιολόγηση της δομικής και 

λειτουργικής κατάστασής του. 
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Η οπτική επισκόπηση αφορά την καταγραφή επιφανειακών φθορών και 

πραγματοποιείται με δύο τρόπους: 

1) Με εξειδικευμένη ομάδα παρακολούθησης η οποία φωτογραφίζει και 

καταγράφει τις φθορές, διαδικασία χρονοβόρα αλλά σχετικά οικονομική 

2) Με εξελιγμένα αυτόματα οχήματα τα οποία βιντεοσκοπούν το οδόστρωμα 

και τα δεδομένα μεταφέρονται στο εργαστήριο έτσι ώστε να αναλυθούν οι 

φθορές – τρόπος αρκετά επιζήμιος οικονομικά και όχι πάντα πλήρως 

αποτελεσματικός 

Η δομική κατάσταση του οδοστρώματος κρίνεται με βάση τη φέρουσα ικανότητά του, 

την ικανότητα δηλαδή να φέρει τα προβλεπόμενα φορτία κυκλοφορίας για την 

χρονική περίοδο για την οποία έχει σχεδιαστεί. Εξαρτάται από ποικίλους παράγοντες 

όπως οι καιρικές συνθήκες, η κυκλοφορία, η γήρανση των υλικών κλπ. 

Για να εκτιμηθεί η φέρουσα ικανότητα του οδοστρώματος συλλέγονται στοιχεία για 

τις εξής παραμέτρους με τους τρόπους που αναγράφονται: 

• Πάχη επιμέρους στρώσεων: με λήψη πυρήνων ή μη καταστρεπτικές μεθόδους 

όπως με χρήση συστήματος γεωραντάρ – συστήνεται το ραντάρ γιατί είναι μη 

καταστρεπτική μέθοδος με ακριβή αποτελέσματα 

• Μηχανικά χαρακτηριστικά υλικών στρώσεων: επί τόπου δοκιμές π.χ. δοκιμή 

δυναμικού πενετρόμετρου κώνου, δοκιμή φόρτισης πλάκας, λήψη πυρήνων, 

παραμορφωσιμόμετρο πίπτοντος βάρους (FWD)  

• Δείκτης δομικής κατάστασης Do: προκύπτει με το σύστημα FWD και 

παρουσιάζει αυξομειώσεις κατά τη διάρκεια του έτους – μικρές τιμές 

υποδηλώνουν ισχυρό οδόστρωμα  

 

Η διατήρηση της λειτουργικής κατάστασης του οδοστρώματος σε υψηλό επίπεδο 

είναι το ίδιο σημαντική με την αντίστοιχη διατήρηση της δομικής κατάστασης έτσι 

ώστε οι χρήστες να λαμβάνουν υψηλό επίπεδο εξυπηρετικότητας, σε ασφαλές 

περιβάλλον, με όσο το δυνατόν μικρότερο κόστος. Τα λειτουργικά χαρακτηριστικά τα 

οποία αλλοιώνονται με την πάροδο του χρόνου και πρέπει να παρακολουθείται η 

αλλαγή τους αυτή παρατίθενται παρακάτω. 

Αρχικά, η ομαλότητα αναφέρεται κυρίως στην κατά μήκος επιπεδότητα της 

επιφάνειας του οδοστρώματος. Η έλλειψη ομαλότητας μπορεί να οδηγήσει σε 

απώλεια του ελέγχου του οχήματος λόγω χαμηλής ποιότητας κύλισης. Για την 

αξιολόγηση της ομαλότητας χρησιμοποιούνται εξειδικευμένα συστήματα 

καταγραφής των επιφανειακών χαρακτηριστικών των οδοστρωμάτων όπως 

συστήματα καταγραφής της μηχανικής απόκρισης, υψηλής ταχύτητας 

προφιλόμετρα, προφιλογράφοι,  «ελαφρά» προφιλόμετρα και χειροκίνητες 

συσκευές (Janoff, 1985). 
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Η έκφραση της ομαλότητας ενός οδοστρώματος γίνεται με τη χρήση διαφόρων 

δεικτών που προκύπτουν από την επεξεργασία και ανάλυση των σχετικών στοιχείων 

συλλογής. Ο ευρύτερα διαδεδομένος και χρησιμοποιούμενος δείκτης είναι ο διεθνής 

δείκτης ομαλότητας IRI (International Roughness Index) (εκφρασμένος σε μονάδες 

κλίσης π.χ. m/km) (Hettiarachchi, et al., 2023). 

Επιπρόσθετα, η τροχοαυλάκωση είναι η εγκάρσια παραμόρφωση που εμφανίζεται 

στα ίχνη των τροχών των οχημάτων. Η έντονη εμφάνισή της σε υγρό οδόστρωμα 

μπορεί να προκαλέσει το φαινόμενο της υδρολίσθησης και να τεθεί σε κίνδυνο η 

ασφάλεια των χρηστών. Προσδιορίζεται με το βάθος αυλάκωσης το οποίο 

υπολογίζεται είτε με τοποθέτηση πήχη εγκάρσια προς τον άξονα του οδοστρώματος 

είτε με συστήματα προφιλομέτρησης που καταγράφουν συνεχώς και απρόσκοπτα 

ενδεχόμενες αυλακώσεις (Erlingsson, 2012). 

H επιφανειακη υφή καθορίζει τον ρυθμό απομάκρυνσης του νερού από τη στρώση 

κυκλοφορίας. Συνδέεται επομένως με την αντιολισθητική ικανότητα του 

οδοστρώματος και επηρεάζει άμεσα την συμπεριφορά των ελαστικών. 

Η πιο διαδεδομένη μέθοδος μέτρησης της υφής αλλά και ταυτόχρονα αρκετά 

χρονοβόρα είναι η μέθοδος της «κηλίδας της άμμου» που βασίζεται στην εκτίμηση 

του όγκου των κενών της επιφάνειας του οδοστρώματος, όταν γνωστός όγκος 

διαβαθμισμένης άμμου διαστρώνεται και γεμίζει τα κενά έως τις κορυφές των 

κόκκων των αδρανών.Τα τελευταία χρόνια χρησιμοποιούνται εξελιγμένα συστήματα 

καταγραφής του βάθους υφής όπου χρησιμοποιούνται ακτίνες λέιζερ. Τα συστήματα 

αυτά είτε σύρονται με το χέρι είτε σύρονται από όχημα και καταγράφουν το βάθος 

υφής κατά την κίνηση του οχήματος (Huang & Huang, 2014). 

Όσον αφορά την ολισθηρότητα ή διαφορετικά «αντίσταση σε ολίσθηση» εκφράζει το 

φαινόμενο της τριβής κυρίως σε υγρό οδόστρωμα που αναπτύσσεται μεταξύ ενός 

κινούμενου ελαστικού και της επιφάνειας κύλισης του οδοστρώματος όταν 

πραγματοποιείται πέδηση και παρατηρείται αδυναμία πραγματοποίησης ελιγμών. Η 

καταγραφή της αντίστασης της επιφάνειας σε ολίσθηση γίνεται με αυτοκινούμενα ή 

ρυμουλκούμενα συστήματα. Υπάρχουν τέσσερα βασικά ήδη συστημάτων μέτρησης 

της αντίστασης σε ολίσθηση: του ακινητοποιημένου τροχού, της πλευρικής δύναμης, 

της σταθερής ολίσθησης και της κυμαινόμενης ολίσθησης (Yu, et al., 2020). 

Αντίστοιχα με τον σχεδιασμό, έτσι και στην αξιολόγηση της συμπεριφοράς των 

οδοστρωμάτων, η Τεχνητή Νοημοσύνη μπορεί να ενσωματωθεί σε αρκετές 

διαδικασίες με στόχο την διευκόλυνση και την επιτάχυνση εντοπισμού φθορών και 

λήψης μέτρων συντήρησης. 

Η ανίχνευση φθορών στην επιφάνεια του οδοστρώματος πραγματοποιείται κυρίως 

μέσα από εικόνες και πάνω σε αυτό βασίζονται τα μοντέλα που έχουν ξεκινήσει να 

αναπτύσσονται για την αξιολόγηση των οδοστρωμάτων. Η ταξινόμηση επιφανειακών 
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φθορών, η οποία στοχεύει στο να αναγνωρίζει αυτόματα τον τύπο φθοράς σε κάθε 

εικόνα αποτελεί αντικείμενο έρευνας από το 1990. Με την ανάπτυξη της βαθιάς 

μάθησης, οι μέθοδοι ταξινόμησης βασισμένοι σε Νευρωνικά Δίκτυα έχουν αλλάξει 

σημαντικά. Σε γενικό πλαίσιο, οι μέθοδοι μπορούν να χωριστούν σε δύο κύριες 

κατηγορίες : το ημιαυτόματο πλαίσιο ταξινόμησης με προκαθορισμένη εξαγωγή 

χαρακτηριστικών και το αυτοματοποιημένο πλαίσιο ταξινόμησης με ενεργή εξαγωγή 

χαρακτηριστικών (Εικόνα 3.6). 

 
Εικόνα 3.6 Αναγνώριση και ταξινόμηση επιφανειακών φθορών 

Πηγή: (Yang & Shi, 2020) 

  

Πριν από την εξέλιξη των μηχανών μάθησης, η ταξινόμηση των επιφανειακών 

φθορών βασιζόταν κυρίως σε MLPNN. Η μεγαλύτερη πρόκληση για τις μεθόδους 

ταξινόμησης με βάση τα MLPNN ήταν το χαρακτηριστικό γνώρισμα της εικόνας για 

την εξαγωγή χαρακτηριστικών. Για τον σκοπό αυτό, υιοθετήθηκε ένας αριθμός 

προκαθορισμένων τεχνικών εξαγωγής χαρακτηριστικών που βασίζονται στην 

επεξεργασία εικόνας για να εξάγονται τα βασικά χαρακτηριστικά της εικόνας ως 

μεταβλητές εισόδου του MLPNN. 

Προκειμένου να μειωθούν οι περιττές πληροφορίες, οι (Xu, et al., 2008) πρότειναν 

δύο χαρακτηριστικές παραμέτρους (ρυθμός ρηγμάτωσης και ελάχιστο εξωτερικό 

ορθογώνιο της ρωγμής) για να αντικατοπτρίζουν τις χρήσιμες πληροφορίες στις 

εικόνες ρωγμών (Εικόνα 3.7). Με βάση τις προκαθορισμένες χαρακτηριστικές 

παραμέτρους, κατασκευάστηκε ένα MLPNN για τη διάκριση των αλλιγατορικών 
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ρωγμών και των ευθύγραμμων ρωγμών. Λαμβάνοντας υπόψη διαφορετικά 

χαρακτηριστικά των διαφόρων τύπων δυσλειτουργίας, προέκυψε η κατανομή των 

πλακιδίων δυσλειτουργίας για να παρέχει αποτελεσματικά χαρακτηριστικά για τους 

ταξινομητές MLPNN.  

 

Εικόνα 3.7 Ταυτοποίηση ρηγμάτωσης μέσω ΑΝΝ 
Πηγή: (Xu, et al., 2008) 

Ενώ η ταξινόμηση των φθορών του οδοστρώματος μπορεί να ολοκληρωθεί 

χρησιμοποιώντας το ημιαυτόματο πλαίσιο ταξινόμησης, είναι ευάλωτη σε 

προκαθορισμένες προσεγγίσεις εξαγωγής χαρακτηριστικών, με αποτέλεσμα να μην 

είναι εφαρμόσιμες σε μεταβαλλόμενες συνθήκες. 

Τα τελευταία χρόνια, το CNN έχει αποδειχθεί ιδιαίτερα ανταγωνιστικό στην 

ταξινόμηση εικόνων, η οποία χρησιμοποιείται ευρέως στο αυτοματοποιημένο 

πλαίσιο ταξινόμησης. Το πιο υποσχόμενο χαρακτηριστικό του CNN είναι η 

αυτοματοποιημένη μηχανική των χαρακτηριστικών, ώστε να μπορεί να 

προσαρμόζεται από μόνη της για διαφορετικές εργασίες ταξινόμησης.  

Ο (Park, et al., 2019) χρησιμοποίησε τις εικόνες που έχουν ληφθεί από μια κάμερα 

black box αυτοκινήτου, δηλαδή μια κάμερα η οποία τοποθετείται μέσα στο όχημα 

ώστε να ταξινομήσει τις φθορές της οδικής επιφάνειας μέσω διαφορετικών 

αρχιτεκτονικών CNN με ποικίλα επίπεδα συνέλιξης και φίλτρα (Εικόνα 3.8). 

Λαμβάνοντας υπόψη τα πολύπλοκα χαρακτηριστικά των εικόνων μαύρου κουτιού, 

επιλέχθηκε το μέγεθος 40 × 40 εικονοστοιχείων ως μέγεθος της εικόνας εισόδου. 

Ωστόσο, οι υπάρχουσες αρχιτεκτονικές μηχανικής μάθησης για την ανίχνευση 

ρωγμών κατασκευάστηκαν με μεγέθη φίλτρων πολύ μεγάλα για την εικόνα εισόδου 

που χρησιμοποιήθηκε σε αυτή τη μελέτη. Αυτές οι υπάρχουσες αρχιτεκτονικές 

χρησιμοποιούσαν τα μεγέθη 20 × 20, 15 × 15, ή μεγέθη φίλτρων 11 × 11, τα οποία 

ήταν σαφώς ακατάλληλα. Συνολικά 16 μοντέλα CNN επινοήθηκαν αλλάζοντας το 

μέγεθος του φίλτρου και το βάθος του δικτύου για να προσδιοριστεί το κατάλληλο 
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μοντέλο για την ανίχνευση ρωγμών. Το επιλεγμένο μοντέλο CNN παρουσίασε υψηλό 

επίπεδο απόδοσης με ακρίβεια 90,81%. 

 

 

Εικόνα 3.8 Παραδείγματα εφαρμογής μοντέλου Park 
Πηγή: (Park, et al., 2019) 

Προκειμένου να βελτιωθεί περαιτέρω η απόδοση των ταξινομητών που βασίζονται 

σε CNN, οι εικόνες τρισδιάστατης φθοράς χρησιμοποιήθηκαν από τον (Li, et al., 2020) 

για να ενισχυθεί το χαρακτηριστικό της φθοράς, μειώνοντας παράλληλα την εκπομπή 

θορύβων. Στη συνέχεια, χρησιμοποιήθηκαν διαφορετικά μεγέθη πεδίων για την 

επιλογή των βέλτιστων υπερ-παραμέτρων για τα CNN. Οι αρχικές  τρισδιάστατες 

εικόνες από το οδόστρωμα χωρίζονται σε κομμάτια με μέγεθος 512 × 512. Τόσο το 

σύνολο δεδομένων εκπαίδευσης όσο και το σύνολο δεδομένων δοκιμής 

αποτελούνται από αυτά τα μικρά κομμάτια και ταξινομούνται σε πέντε τύπους:  

(1) μη ρωγμή 

(2) εγκάρσια ρωγμή 

(3)διαμήκης ρωγμή 

(4) ορθογωνική ρωγμή 
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(5) αλλιγατορική ρωγμή  

Συνολικά, τέσσερα προτεινόμενα CNN εκπαιδεύτηκαν με επιτυχία με την ακρίβεια 

των τεσσάρων προτεινόμενων CNNs να είναι πάνω από 94%. Ειδικότερα, η συνολική 

ακρίβεια του CNN-3 είναι ακόμη και πάνω από 96% (Εικόνα 3.9).  

 

 

Εικόνα 3.9 Η συνάρτηση απώλειας σε σχέση με τους χρόνους εκπαίδευσης 
Πηγή: (Li, et al., 2020) 

Μπορεί να είναι βέβαιο ότι το αυτοματοποιημένο πλαίσιο ταξινόμησης με βάση το 

CNN μπορεί να επιτύχει τέλεια ακρίβεια υπό την προϋπόθεση της επαρκούς 

επισήμανσης δεδομένων, ωστόσο, οι πιο πρόσφατες μελέτες ενδιαφέρονται 

περισσότερο για τον εντοπισμό της φθοράς. 

Όσον αφορά τον εντοπισμό της επιφανειακής φθοράς του οδοστρώματος αποσκοπεί 

στον προσδιορισμό της θέσης του αντικειμένου που ανιχνεύεται στην εικόνα. 

Υπάρχουν δύο διαθέσιμες μέθοδοι εντοπισμού με βάση το CNN για το θέμα αυτό, οι 

οποίες είναι τα CNNs με βάση την πρόταση περιοχής (μέθοδος δύο σταδίων) και τα 

CNNs από άκρο σε άκρο (μέθοδος ενός σταδίου).  

Τα βασισμένα στην πρόταση περιοχής CNNs, όπως το CNN με βάση την περιοχή (R-

CNN), το ταχύτερο R-CNN και το πιο ταχύ R-CNN, εξαρτώνται από την περιοχή 

ενδιαφέροντος (ROI) για την ολοκλήρωση της αντικειμενικής ταξινόμησης και τον 

εντοπισμό.  

Για να επιτευχθεί πολύ ταχύτερος εντοπισμός, προτάθηκαν τα από άκρο σε άκρο 

CNNs για τον άμεσο εντοπισμό της θέσης της φθοράς, όπως το  You only look once 

(Yolo)  και ο single shot multibox detector (SSD) (Du, et al., 2020). Αυτές οι μέθοδοι 

έχουν επιτυχώς εφαρμοστεί στον εντοπισμό φθορών στην επιφάνεια του 

οδοστρώματος (Εικόνα 3.10). 
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Εικόνα 3.10 α)Ταχύτερη RCNN αρχιτεκτονική β)Yolo αρχιτεκτονική 
Πηγή: (Du, et al., 2020) 

 

Ενώ το R-CNN έχει εισαχθεί για τον εντοπισμό αντικειμένων από το 2014, δεν είχε 

σχεδιαστεί για τον εντοπισμό φθορών του οδοστρώματος αρχικά. Τα τελευταία 

χρόνια, η ταχύτερη R-CNN, η οποία αναπτύχθηκε από το R-CNN, υιοθετήθηκε για την 

ανίχνευση της φθοράς του οδοστρώματος. 

 Οι (Huyan, et al., 2019) ανέπτυξαν ένα Νευρωνικό Δίκτυο που βασίζεται στην 

ταχύτερη αρχιτεκτονική R-CNN για την ανίχνευση σφραγισμένων και μη 

σφραγισμένων ρωγμών κάτω από σύνθετο οδικό υπόβαθρο, το οποίο εξέταζε τις 

επιρροές των μη ισορροπημένων φωτισμών, των διαγραμμίσεων και των σκιάσεων 

(Εικόνα 3.11). Τα πειράματα έδειξαν ότι το Νευρωνικό Δίκτυο μπορεί να ανιχνεύσει 

με επιτυχία τόσο τις μη σφραγισμένες όσο και τις σφραγισμένες ρωγμές υπό 

διάφορες συνθήκες, ανεξάρτητα από την επιφάνεια της θερμής ασφάλτου ή του 

σκυροδέματος τσιμέντου Portland. 
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Εικόνα 3.11 Διαφορετικές συνθήκες σφραγισμένων και μη ρωγμών 
Πηγή: (Huyan, et al., 2019) 

Σε σύγκριση με το ταχύτερο R-CNN, η αρχιτεκτονική Yolo χρησιμοποιείται ευρύτερα 

στον εντοπισμό φθορών στο οδόστρωμα λόγω της εξαιρετικής υπολογιστικής της 

απόδοσης (Εικόνα 3.12). 

Ο (Du, et al., 2020) πραγματοποίησε μια σύγκριση μεταξύ των ταχύτερων R-CNN και 

των YOLO έκδοση 3 (v3) για την αξιολόγηση της απόδοσης ανίχνευσης των φθορών 

του οδοστρώματος από την άποψη της ακρίβειας εντοπισμού και της ταχύτητας 

επεξεργασίας. Τα αποτελέσματα έδειξαν ότι το YOLO v3 είναι 9 φορές ταχύτερο από 

το ταχύτερο R-CNN, διατηρώντας την ίδια ακρίβεια.  
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Εικόνα 3.12 Εντοπισμός φθορών με την αρχιτεκτονική YOLO ν3 
Πηγη: (Du, et al., 2020) 

Επιπλέον, τα μοντέλα αυτά, χρησιμοποιήθηκαν επίσης για την ταχεία ανίχνευση 

φθορών του οδοστρώματος με χαμηλές υπολογιστικές προσπάθειες.  

Οι (Maeda, et al., 2018) ανέπτυξαν ένα πρόγραμμα εφαρμογής για κινητά τηλέφωνα 

με ενσωμάτωση κατάλληλης αρχιτεκτονικής για την ανίχνευση φθορών στο 

οδόστρωμα, το οποίο πέτυχε χρόνο εξαγωγής συμπερασμάτων 1,5 s ανά εικόνα σε 

ένα κινητό τηλέφωνο (Εικόνα 3.13). Αυτή η μελέτη κατέδειξε τη σκοπιμότητα της 

εφαρμογής της μηχανικής μάθησης για τον εντοπισμό φθορών του οδοστρώματος με 

κινητές συσκευές. 
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Εικόνα 3.13 Εντοπισμός φθορών μέσω εφαρμογής στο κινητό τηλέφωνο 
Πηγή: (Maeda, et al., 2018) 

  

Οι μέθοδοι εντοπισμού με βάση το CNN είναι πολλά υποσχόμενες στην ανίχνευση 

φθορών οδοστρώματος, καθώς πετυχαίνουν ικανοποιητική ακρίβεια και υψηλή 

ταχύτητα επεξεργασίας. Ωστόσο, το μειονέκτημα των τρεχουσών μεθόδων είναι το 

υψηλό απαιτούμενο ποσοστό δεδομένων. Τα σύνολα δεδομένων που 

χρησιμοποιούνται στην εκπαίδευση του μοντέλου θα πρέπει να καλύπτουν μια 

ποικιλία συνθηκών για τη βελτίωση της απόδοσης. 
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4. ΕΦΑΡΜΟΓΗ ΤΗΣ ΤΕΧΝΗΤΗΣ 

ΝΟΗΜΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΠΡΟΒΛΕΨΗ ΤΗΣ 

ΟΜΑΛΟΤΗΤΑΣ 

4.1 Συνοπτική Περιγραφή 

Η ομαλότητα ήταν από τα πρώτα λειτουργικά χαρακτηριστικά που 

κατηγοριοποιήθηκαν και άρχισαν να συλλέγονται τακτικά προκειμένου να 

αξιολογηθεί η κατάσταση υφιστάμενων οδοστρωμάτων. Είναι άρρηκτα συνδεδεμένη 

με την κατατομή της επιφάνειας και την ποιότητα κύλισης των οδοστρωμάτων. Στα 

νέα οδοστρώματα, η ομαλότητα είναι συνάρτηση του τρόπου και της ποιότητας 

κατασκευής τους. Με την πάροδο του χρόνου όμως και ανάλογα με τον 

κυκλοφοριακό φόρτο, η ομαλότητα τείνει να χειροτερεύει λόγω της συνδυασμένης 

επίδρασης κυκλοφοριακού φόρτου και περιβαλλοντικών συνθηκών. Για τον λόγο 

αυτό, αξιολογούνται μέσα από περιοδικές μετρήσεις και τα αποτελέσματα των 

μετρήσεων εκφράζονται με κατάλληλους δείκτες. 

Μέσα από σχετική έρευνα, έχει καθιερωθεί ο Διεθνής Δείκτης Ομαλότητας IRI – 

International Roughness Index με μονάδες m/km, για τη μέτρηση και αξιολόγησή της. 

Μία πρόβλεψη των δεικτών μέσα από τα μοντέλα Τεχνητής Νοημοσύνης μπορεί να 

βελτιστοποιήσει τα χρονοδιαγράμματα συντήρησης, να ιεραρχήσει την 

σημαντικότητα των επισκευών και να κατανείμει τα κόστη συντήρησης πιο συνετά. 

Στο παρόν κεφάλαιο περιγράφονται οι τέσσερις διαφορετικές μορφές μοντέλων 

μηχανικής μάθησης που αναπτύσσονται προκειμένου να προβλέψουν τις τιμές για 

τους δείκτες ομαλότητας μέσω του περιβάλλοντος της γλώσσας προγραμματισμού 

Python. Χρησιμοποιούνται τα εξής μοντέλα: Γραμμικη Παλινδρόμηση(Linear 

Regression), Πολυωνυμική Παλινδρόμηση (Polynomial Regression), «Τυχαία Δέντρα» 

(Random Forest), Ενίσχυση Κλίσης (Gradient Boosting) και κάθε μοντέλο αξιολογείται 

ως προς την ικανότητά του να προσεγγίσει όσο το δυνατόν καλύτερα την πραγματική 

τιμή του δείκτη για το έτος πρόβλεψης, η οποία είναι γνωστή. 

Η Python, με τις εκτεταμένες βιβλιοθήκες της, όπως οι Scikit-learn, Pandas, NumPy 

και Matplotlib, δίνει ποικίλες επιλογές μέσα από το προγραμματιστικό της  

περιβάλλον. Αυτές οι βιβλιοθήκες παρέχουν ισχυρά εργαλεία για τον χειρισμό 

δεδομένων, την υλοποίηση μοντέλων και την οπτικοποίηση των αποτελεσμάτων, 

καθιστώντας τες ιδανικές για τη συγκεκριμένη διαδικασία.  
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Τα δεδομένα για την πραγματοποίηση των αναλύσεων λαμβάνονται από το 

Εργαστήριο Οδοστρωμάτων του ΕΜΠ σχετικά με τις μετρήσεις δεικτών IRI. Οι 

μετρήσεις αφορούν ένα οδικό τμήμα 18 χιλιομέτρων και πραγματοποιήθηκαν 

περιοδικά ανά έτος για 13 έτη πλην 2 ετών (2ο και 8ο έτος) στα οποία οι μετρήσεις 

παραλείφθηκαν. Η μέτρηση γίνεται κατά μήκος όλης της χιλιομετρικής απόστασης 

και λαμβάνονται τιμές IRI ανά 10 μέτρα.  

Το 1ο έτος δεν συμπεριλαμβάνεται στην εκπαίδευση των μοντέλων μηχανικής 

μάθησης καθώς πάνω από τα μισά σημεία μέτρησης έχουν τιμή 0, η οποία έχει 

τοποθετηθεί επειδή ενδεχομένως δεν υπάρχουν τιμές για αυτά τα σημεία για το 

συγκεκριμένο έτος. Ωστόσο, το μοντέλο δε θα τα αγνοούσε αλλα αντιθέτως θα τα 

προσμετρούσε σα να ήταν οι πραγματικές τιμές τους και θα μειωνόταν η αξιοπιστία 

του. Συνεπώς, κρίθηκε απαραίτητο η συγκεκριμένη χρονιά να αφαιρεθεί έτσι ώστε η 

προσέγγιση του μοντέλου να είναι πιο κοντά στην πραγματικότητα και το έτος 

έναρξης είναι πλέον το 3ο έτος το οποίο είναι το επόμενο μετρήσιμο αφού στο 2ο έτος 

δεν πραγματοποιήθηκαν μετρήσεις. Επιπλέον, σε όσα έτη εντοπίζονται μεμονωμένα 

τιμές σε κάποιες θέσεις 0, διορθώνονται μέσω της συνάρτησης Γραμμικής 

Παρεμβολής (Linear interpolation) για να προσεγγίσουν τις μετρούμενες τιμές και να 

μην αλλοιώσουν το τελικό αποτέλεσμα. 

Σε κάθε μοντέλο που αναπτύσσεται, ορίζονται τα δεδομένα εισόδου, με βάση τα 

οποία εκπαιδεύονται τα μοντέλα. Στα δεδομένα εισόδου τοποθετούνται οι μετρήσεις 

μέχρι και το 12ο έτος καθώς το 13ο έτος αποτελεί το έτος πρόβλεψης, το οποίο τα 

μοντέλα καλούνται να προσεγγίσουν. 

4.2 Στοιχεία 

Τα δεδομένα με βάση τα οποία πραγματοποιείται  όλη η διαδικασία διατέθηκαν από 

το Εργαστήριο Οδοστρωμάτων του ΕΜΠ και ένα μέρος τους αποτυπώνεται στον 

Πίνακα 4.1: 

Πίνακας 4.1 Απόσπασμα βάσης δεδομένων δεικτών IRI 

Τιμές IRI (m/km)  

Έτος μέτρησης 

Χιλιομετρική 
Θέση 1 3 4 5 6 7 9 10 11 12 13 

0,10 0,45 0,58 0,63 0,55 0,59 0,69 0,79 1,12 0,98 1,05 1,14 

0,11 0,54 0,56 0,55 0,65 0,71 0,86 0,85 0,96 0,83 1,11 0,82 

0,12 0,57 0,69 0,72 0,64 0,65 0,94 0,87 0,85 0,68 0,96 1,24 

0,13 0,62 0,56 0,45 0,58 0,69 0,55 0,79 1,01 0,76 0,81 0,92 

0,14 0,52 0,61 0,55 0,50 0,40 0,44 0,60 0,57 0,50 0,57 0,52 

0,15 0,56 0,43 0,51 0,46 0,68 0,75 0,74 0,54 0,74 0,77 0,71 

0,16 0,45 0,69 0,67 0,69 0,56 0,60 0,51 0,69 0,56 0,61 0,76 
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Δίνονται τιμές IRI  ανά 10 m για το οδικό τμήμα υπό μελέτη, υπάρχουν δηλαδή 1821 

σημεία μετρήσεως, για τα έτη 1, 3-7, 9-13. Όπως αναφέρθηκε και παραπάνω το 1ο 

έτος λόγω της χαμηλής αξιοπιστίας του θα αφαιρεθεί από τις μοντελοποιήσεις. 

Έτσι, η τελική μορφή της βάσης δεδομένων που θα χρησιμοποιηθεί αποτυπώνεται 

στον Πίνακα 4.2: 

 

Πίνακας 4.2 Απόσπασμα τελικής βάσης δεδομένων 

0,17 0,65 0,53 0,58 0,60 0,61 0,51 0,63 0,61 0,72 0,59 0,62 

0,18 0,45 0,61 0,54 0,60 0,48 0,51 0,47 0,60 0,53 0,70 0,52 

0,19 0,48 0,56 0,57 0,53 0,60 0,69 0,70 0,48 0,76 0,55 0,49 

0,20 0,52 0,64 0,68 0,65 0,63 0,55 0,71 0,83 0,63 0,76 0,84 

0,21 0,75 0,64 0,71 0,69 0,72 0,77 0,70 0,71 0,80 0,71 0,81 

0,22 0,76 0,83 0,67 0,72 0,77 0,71 0,73 0,59 0,68 0,64 0,78 

0,23 0,64 0,76 0,77 0,74 0,91 0,95 0,82 0,70 1,03 0,86 0,84 

0,24 0,66 0,92 0,93 1,00 1,34 1,15 1,31 1,10 1,26 1,32 1,35 

0,25 1,01 0,94 0,97 0,98 0,82 0,83 0,94 1,23 0,93 1,15 1,36 

0,26 1,11 0,69 0,77 0,75 0,91 0,99 0,78 0,70 0,99 0,81 0,91 

0,27 0,70 0,93 0,78 0,99 1,42 1,51 1,56 1,31 1,52 1,51 1,38 

0,28 1,56 1,32 1,41 1,35 0,66 0,79 0,63 1,14 0,75 1,05 1,52 

0,29 0,83 0,63 0,66 0,59 0,93 1,14 0,92 0,78 1,15 0,89 0,89 

0,30 0,74 1,10 1,14 1,06 1,09 0,93 1,01 1,31 0,94 1,23 1,46 

0,31 1,07 0,75 0,86 0,87 0,68 0,59 0,72 0,77 0,64 0,70 0,91 

0,32 0,76 0,59 0,52 0,61 0,63 0,57 0,66 0,66 0,62 0,76 0,79 

Τιμές IRI (m/km)  

 Έτος μέτρησης 

Χιλιομετρική  
Θέση 3 4 5 6 7 9 10 11 12 13 

0,10 0,58 0,63 0,55 0,59 0,69 0,79 1,12 0,98 1,05 1,14 

0,11 0,56 0,55 0,65 0,71 0,86 0,85 0,96 0,83 1,11 0,82 

0,12 0,69 0,72 0,64 0,65 0,94 0,87 0,85 0,68 0,96 1,24 

0,13 0,56 0,45 0,58 0,69 0,55 0,79 1,01 0,76 0,81 0,92 

0,14 0,61 0,55 0,5 0,4 0,44 0,6 0,57 0,5 0,57 0,52 

0,15 0,43 0,51 0,46 0,68 0,75 0,74 0,54 0,74 0,77 0,71 

0,16 0,69 0,67 0,69 0,56 0,6 0,51 0,69 0,56 0,61 0,76 

0,17 0,53 0,58 0,6 0,61 0,51 0,63 0,61 0,72 0,59 0,62 

0,18 0,61 0,54 0,6 0,48 0,51 0,47 0,6 0,53 0,7 0,52 

0,19 0,56 0,57 0,53 0,6 0,69 0,7 0,48 0,76 0,55 0,49 

0,20 0,64 0,68 0,65 0,63 0,55 0,71 0,83 0,63 0,76 0,84 

0,21 0,64 0,71 0,69 0,72 0,77 0,7 0,71 0,8 0,71 0,81 

0,22 0,83 0,67 0,72 0,77 0,71 0,73 0,59 0,68 0,64 0,78 

0,23 0,76 0,77 0,74 0,91 0,95 0,82 0,7 1,03 0,86 0,84 

0,24 0,92 0,93 1 1,34 1,15 1,31 1,1 1,26 1,32 1,35 

0,25 0,94 0,97 0,98 0,82 0,83 0,94 1,23 0,93 1,15 1,36 
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Οι γνωστές τιμές δεικτών IRI του 13ου έτους θα συγκριθούν με τις προβλεπόμενες που 

θα υπολογίσουν τα τέσσερα διαφορετικά μοντέλα με βάση τα δεδομένα των 

προηγούμενων ετών. Επομένως, το έτος πρόβλεψης για τη συγκεκριμένη εφαρμογή 

είναι το 13ο έτος. 

4.3 Ανάλυση σε γλώσσα προγραμματισμού Python  

Τα παραπάνω δεδομένα, για να μπορέσουν να είναι επεξεργάσιμα από τη γλώσσα 

προγραμματισμού Python μετασχηματίζονται σε πίνακα τριών στηλών, όπου στην 

πρώτη αναγράφεται η χιλιομετρική θέση (Position), στη δεύτερη το έτος μέτρησης 

(Year) και στην τρίτη οι τιμές του δείκτη ομαλότητας (Roughness Index). Έτσι, τα 

δεδομένα παίρνουν τη μορφή που ένα ενδεικτικό τμήμα της απεικονίζεται στον 

Πίνακα 4.3. 

 
Πίνακας 4.3 Δεδομένα Οδοστρώματος 

Χιλιομετρική Θέση Έτος Τιμή IRI (m/km) 
0,10 3 0,58 

0,10 4 0,63 

0,10 5 0,55 

0,10 6 0,59 

0,10 7 0,69 

0,10 9 0,79 

0,10 10 1,12 

0,10 11 0,98 

0,10 12 1,05 

0,11 3 0,56 

0,11 4 0,55 

0,11 5 0,65 

0,11 6 0,71 

0,11 7 0,86 

0,11 9 0,85 

0,11 10 0,96 

0,11 11 0,83 

0,26 0,69 0,77 0,75 0,91 0,99 0,78 0,7 0,99 0,81 0,91 

0,27 0,93 0,78 0,99 1,42 1,51 1,56 1,31 1,52 1,51 1,38 

0,28 1,32 1,41 1,35 0,66 0,79 0,63 1,14 0,75 1,05 1,52 

0,29 0,63 0,66 0,59 0,93 1,14 0,92 0,78 1,15 0,89 0,89 

0,30 1,1 1,14 1,06 1,09 0,93 1,01 1,31 0,94 1,23 1,46 

0,31 0,75 0,86 0,87 0,68 0,59 0,72 0,77 0,64 0,7 0,91 

0,32 0,59 0,52 0,61 0,63 0,57 0,66 0,66 0,62 0,76 0,79 

0,33 0,48 0,59 0,65 0,69 0,66 0,85 0,71 0,69 0,72 0,91 

0,34 0,59 0,59 0,66 0,58 0,56 0,6 0,69 0,58 0,53 0,9 

0,35 0,56 0,53 0,53 0,67 0,64 0,78 0,74 0,77 0,82 0,93 
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0,11 12 1,11 

0,12 3 0,69 

0,12 4 0,72 

0,12 5 0,64 

0,12 6 0,65 

0,12 7 0,94 

0,12 9 0,87 

0,12 10 0,85 

0,12 11 0,68 

0,12 12 0,96 
 

Το αρχείο αυτό ονομάζεται pavement_data και είναι έτοιμο να αναγνωσθεί και να 

επεξεργαστεί από οποιονδήποτε κώδικα Python. Σε αυτό θα βασιστούν οι τέσσερις 

αλγόριθμοι μηχανικής μάθησης οι οποίοι αναλύονται εκτενώς παρακάτω. 

 

4.3.1 Γραμμική Παλινδρόμηση - Linear Regression  

Για το μοντέλο της γραμμικής παλινδρόμησης, αρχικά μέσω της εντολής import 

εισάγονται στον κώδικα βιβλιοθήκες οι οποίες δίνουν τις απαραίτητες πληροφορίες  

για την ορθή ανάγνωση των αρχείων και την επεξεργασία με τα μοντέλα της 

γραμμικής παλινδρόμησης. Η βιβλιοθήκη pandas δίνει τη δυνατότητα ο αλγόριθμος 

να αναγνώσει το υπολογιστικό φύλλο (Excel) και να οργανώσει τα δεδομένα σε 

μορφές πινάκων. Η βιβλιοθήκη numpy εξυπηρετεί σε όποιον αριθμητικό υπολογισμό 

χρειαστεί και από τη βιβλιοθήκη sklearn.linear_model εισάγεται το μοντέλο της 

Linear Regression για την επίλυση με τη συγκεκριμένη μέθοδο. 

 

 

Εικόνα 4.1 Εισαγωγή βιβλιοθηκών 
 

Το αρχείο Excel που περιέχει το σύνολο των δεδομένων φορτώνεται 

χρησιμοποιώντας την pandas.read_excel και η διαδρομή του αρχείου καθορίζεται με 

τη μεταβλητή file_path. Τα δεδομένα ταξινομούνται με βάση τη θέση και το έτος 

χρησιμοποιώντας την data.sort_values() η οποία εξασφαλίζει ότι διατηρείται η 

χρονολογική σειρά, κάτι εξαιρετικά σημαντικό για προβλέψεις που βασίζονται στο 

χρόνο. 

Ο αλγόριθμος εντοπίζει όλες τις μοναδικές οδικές χιλιομετρικές θέσεις με την εντολή 

data[‘Position’].unique για να μπορεί να διαχειριστεί κάθε χιλιομετρική θέση 
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ανεξάρτητα από τις άλλες. Δημιουργείται μία κενή λίστα predictions για την 

αποθήκευση των προβλέψεων για το οδικό τμήμα. Κάθε πρόβλεψη θα περιλαμβάνει 

την θέση, το έτος πρόβλεψης (13ο έτος) και τον προβλεπόμενο δείκτη ομαλότητας για 

το 13ο έτος. Τέλος, ορίζει ότι το μοντέλο που θα χρησιμοποιηθεί είναι αυτό της 

Γραμμικής Παλινδρόμησης με γραμμική σχέση μεταξύ των μεταβλητών(βλ. Σχ. 2.1).  

 

 

Εικόνα 4.2 Ανάγνωση και διαχωρισμός δεδομένων 
 

 

Για κάθε μοναδική χιλιομετρική θέση, η στήλη «Έτος» εξάγεται ως η ανεξάρτητη 

μεταβλητή Χ και ο δείκτης ομαλότητας ως η εξαρτημένη μεταβλητή y. Η μεταβλητή Χ 

αναδιαμορφώνεται σε μορφή 2D επειδή η βιβλιοθήκη scikit-learn μόνο έτσι μπορεί 

να την αναγνωρίσει. Το μοντέλο εκπαιδεύεται χρησιμοποιώντας τα δεδομένα των 

προηγούμενων ετών για την τρέχουσα θέση του αυτοκινητόδορομου.  

Αφού εκπαιδευτεί, το μοντέλο προβλέπει τον δείκτη ομαλότητας IRI για το 13ο έτος 

και το εισάγει στη βάση δεδομένων predict. Μετά την επεξεργασία όλων των 

χιλιομετρικών θέσεων, οι προβλέψεις που έχουν αποθηκευτεί μετατρέπονται σε ένα 

πλαίσιο δεδομένων DataFrame που περιέχει τρεις στήλες: 

• Position: Η χιλιομετρική θέση της οδού 

• Year: Το έτος πρόβλεψης (13ο ) 

• Predicted Roughness Index: Ο προβλεπόμενος δείκτης ομαλότητας με χρήση 

γραμμικής παλινδρόμησης   
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Εικόνα 4.3 Προβλέψεις τιμών IRI με Γραμμική Παλινδρόμηση 

Οι προβλέψεις αποθηκεύονται σε αρχείο Excel με όνομα 

‘’predicted_roughness_13th_linear.xlsx’’ και μόλις αποθηκευτούν ο αλγόριθμος 

παρουσιάζει μήνυμα επιβεβαιώνοντας ότι οι προβλέψεις έχουν αποθηκευτεί 

επιτυχώς. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Πίνακας 4.4 Απόσπασμα προβλέψεων με Γραμμική Παλινδρόμηση 

Χιλιομετρική Θέση Έτος Τιμές IRI (m/km) 

0,10 13 1,120 

0,11 13 1,084 

0,12 13 0,902 

0,13 13 0,925 

0,14 13 0,537 

0,15 13 0,797 

0,16 13 0,565 

0,17 13 0,655 

0,18 13 0,585 

0,19 13 0,645 

0,20 13 0,742 

0,21 13 0,758 

0,22 13 0,622 

0,23 13 0,910 

0,24 13 1,361 

0,25 13 1,090 
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0,26 13 0,882 

0,27 13 1,692 

0,28 13 0,741 

0,29 13 1,070 

0,30 13 1,121 

0,31 13 0,655 

0,32 13 0,713 

0,33 13 0,794 

0,34 13 0,585 

0,35 13 0,854 

0,36 13 0,634 

0,37 13 0,612 

0,38 13 0,669 

0,39 13 0,757 

0,40 13 0,762 

0,41 13 0,638 

0,42 13 0,716 

0,43 13 0,845 

0,44 13 0,807 

0,45 13 0,703 

0,46 13 0,828 

0,47 13 0,756 

0,48 13 0,812 

0,49 13 0,906 

  

Οι τιμές αυτές οι οποίες υπολογίστηκαν θα συγκριθούν με τις ήδη μετρημένες για το 

13ο έτος. 

4.3.2 Πολυωνυμική Παλινδρόμηση - Polynomial Regression 

Ακολουθείται μία αντίστοιχη διαδικασία με την Γραμμική Παλινδρόμηση, εισάγοντας 

επιπρόσθετα το μοντέλο PolynomialFeatures από τη βιβλιοθήκη 

sklearn.preprocessing για να παράγει πολυωνυμικά χαρακτηριστικά.  

Η ιδιότητα Polynomial Features χρησιμοποιείται για τη δημιουργία πολυωνυμικών 

όρων από τις μεταβλητές εισόδου (βλ. Σχ. 2.2). Εδώ επιλέγεται τετραγωνικό μοντέλο 

(degree=2) για την καταγραφή μη γραμμικών τάσεων.  

Οι προβλέψεις αποθηκεύονται σε αρχείο Excel με όνομα 

‘’predicted_roughness_13th_polynomial.xlsx’’ και μόλις αποθηκευτούν ο αλγόριθμος 

παρουσιάζει μήνυμα επιβεβαιώνοντας ότι οι προβλέψεις έχουν αποθηκευτεί 

επιτυχώς. 
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Εικόνα 4.4 Προβλέψεις τιμών IRI με Πολυωνυμική Παλινδρόμηση 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Εικόνα 4.5 Επιβεβαίωση αποθήκευσης σε αρχείο Excel 
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Πίνακας 4.5 Απόσπασμα προβλέψεων με Πολυωνυμική Παλινδρόμηση 

Χιλιομετρική 
Θέση 

Έτος Τιμές IRI (m/km) 

0,10 13 1,229 

0,11 13 1,064 

0,12 13 0,877 

0,13 13 0,885 

0,14 13 0,650 

0,15 13 0,694 

0,16 13 0,639 

0,17 13 0,649 

0,18 13 0,736 

0,19 13 0,573 

0,20 13 0,796 

0,21 13 0,712 

0,22 13 0,630 

0,23 13 0,865 

0,24 13 1,223 

0,25 13 1,234 

0,26 13 0,766 

0,27 13 1,389 

0,28 13 1,205 

0,29 13 0,866 

0,30 13 1,247 

0,31 13 0,711 

0,32 13 0,752 

0,33 13 0,649 

0,34 13 0,543 

0,35 13 0,849 

0,36 13 0,648 

0,37 13 0,533 

0,38 13 0,594 

0,39 13 0,946 

0,40 13 0,839 

0,41 13 0,651 

0,42 13 0,688 

0,43 13 0,874 

0,44 13 0,924 

0,45 13 0,604 

0,46 13 0,820 

0,47 13 0,796 

0,48 13 0,997 

0,49 13 0,954 
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Εικόνα 4.6 Μοντέλο Τυχαίων Δέντρων 

4.3.3  Τυχαία Δέντρα - Random Forests 

Για το μοντέλο Τυχαίων Δέντρων απαιτείται να εισαχθεί από τις βιβλιοθήκες η 

“RandomForestRegressor” η οποία είναι μία μέθοδος συνόλου που συνδυάζει 

πολλαπλά δέντρα απόφασης για να παράγει ισχυρές προβλέψεις (βλ. παρ. 2.2.3).  

Ακολουθείται μία διαδικασία αντίστοιχη των παραπάνω όπου το μοντέλο αφού 

εκπαιδευτεί μαθαίνοντας τη σχέση μεταξύ έτους και δείκτη ομαλότητας, δημιουργεί 

μία λίστα με τις προβλέψεις για τους δείκτες ομαλότητες για το 13ο έτος των 1821 

διαφορετικών χιλιομετρικών θέσεων. Η λίστα αυτή αποθηκεύεται ως υπολογιστικό 

φύλλο με όνομα ‘’predicted_roughness_13th_randomforest.xlsx’’. 
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Πίνακας 4.6 Απόσπασμα προβλέψεων με Τυχαία Δέντρα 

Χιλιομετρική 
Θέση 

Έτος Τιμές IRI (m/km) 

0,10 13 1,037 

0,11 13 1,043 

0,12 13 0,900 

0,13 13 0,814 

0,14 13 0,558 

0,15 13 0,747 

0,16 13 0,604 

0,17 13 0,615 

0,18 13 0,657 

0,19 13 0,585 

0,20 13 0,740 

0,21 13 0,726 

0,22 13 0,645 

0,23 13 0,878 

0,24 13 1,293 

0,25 13 1,111 

0,26 13 0,834 

0,27 13 1,498 

0,28 13 0,993 

0,29 13 0,929 

0,30 13 1,179 

0,31 13 0,694 

0,32 13 0,725 

0,33 13 0,716 

0,34 13 0,551 

0,35 13 0,804 

0,36 13 0,630 

0,37 13 0,588 

0,38 13 0,632 

0,39 13 0,819 

0,40 13 0,779 

0,41 13 0,629 

0,42 13 0,690 

0,43 13 0,791 

0,44 13 0,815 

0,45 13 0,642 

0,46 13 0,798 

0,47 13 0,771 

0,48 13 0,829 

0,49 13 0,844 
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Εικόνα 4.7 Μοντέλο Ενίσχυσης Κλίσης 

4.3.4 Ενίσχυση Κλίσης - Gradient Boosting  

Το τελευταίο μοντέλο το οποίο αναπτύσσεται, είναι αυτό της Ενίσχυσης Κλίσης (βλ. 

παρ. 2.2.4). Το μοντέλο εκπαιδεύεται δημιουργώντας δέντρα αποφάσεων όπως και 

στα Τυχαία Δέντρα, με κάθε δέντρο να διορθώνει τα σφάλματα του προηγούμενου. 

Οι προβλέψεις για το 13ο έτος αποθηκεύονται σε υπολογιστικό φύλλο με όνομα 

‘’predicted_roughness_13th_polynomial.xlsx’’ και μόλις αποθηκευτούν ο αλγόριθμος 

παρουσιάζει μήνυμα επιβεβαιώνοντας ότι οι προβλέψεις έχουν αποθηκευτεί 

επιτυχώς. 
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Πίνακας 4.7 Απόσπασμα προβλέψεων με Ενίσχυση Κλίσης 

Χιλιομετρική 
Θέση 

Έτος Τιμές IRI (m/km) 

0,10 13 1,0499 

0,11 13 1,1099 

0,12 13 0,959 

0,13 13 0,809 

0,14 13 0,569 

0,15 13 0,769 

0,16 13 0,609 

0,17 13 0,590 

0,18 13 0,699 

0,19 13 0,550 

0,20 13 0,759 

0,21 13 0,710 

0,22 13 0,640 

0,23 13 0,860 

0,24 13 1,319 

0,25 13 1,149 

0,26 13 0,810 

0,27 13 1,510 

0,28 13 1,048 

0,29 13 0,890 

0,30 13 1,229 

0,31 13 0,699 

0,32 13 0,759 

0,33 13 0,719 

0,34 13 0,530 

0,35 13 0,819 

0,36 13 0,629 

0,37 13 0,600 

0,38 13 0,620 

0,39 13 0,849 

0,40 13 0,839 

0,41 13 0,649 

0,42 13 0,690 

0,43 13 0,779 

0,44 13 0,859 

0,45 13 0,630 

0,46 13 0,829 

0,47 13 0,779 

0,48 13 0,849 

0,49 13 0,879 
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5. ΑΞΙΟΛΟΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ 

5.1 Γενικά 

Αφού υπολογίστηκαν οι προβλεπόμενες τιμές από τα τέσσερα μοντέλα, 

πραγματοποιείται η σύγκρισή τους με τις μετρημένες τιμές IRI για το 13ο έτος. Η 

απόκλιση του κάθε τμήματος θα εκτιμηθεί με βάση δύο στατιστικούς δείκτες οι 

οποίοι υποδηλώνουν την απόκλιση της πρόβλεψης από την πραγματικότητα.  

Αρχικά, θα υπολογιστεί με βάση το Συμμετρικό Μέσο Απόλυτο Ποσοστιαίο Σφάλμα - 

Symmetric Mean Absolute Percentage Error (SMAPE): 

                                                                             

                                                                                                           (Σχ. 5.1 ) 

 

Όπου:                                          

At: πραγματικές τιμές μεγεθών (Actual) 

Ft: προβλεπόμενες τιμές μεγεθών (Forecasted) 

Το συμμετρικό μέσο απόλυτο ποσοστιαίο σφάλμα (SMAPE) είναι μια στατιστική 

παράμετρος που χρησιμοποιείται για τη μέτρηση της ακρίβειας των μοντέλων 

πρόβλεψης με τον υπολογισμό της ποσοστιαίας διαφοράς μεταξύ των 

προβλεπόμενων και των πραγματικών τιμών. Έχει σχεδιαστεί ώστε να είναι 

συμμετρικό, αποτρέποντας τη δημιουργία ακραίων  σφαλμάτων στο συνολικό 

υπολογισμό.Αυτή η μαθηματική φόρμουλα κανονικοποιεί το απόλυτο σφάλμα με το 

μέσο όρο των απόλυτων πραγματικών και προβλεπόμενων μεγεθών, εξασφαλίζοντας 

αναλλοίωτη κλίμακα (Kreinovich, et al., 2014).  

Οι λόγοι που θα χρησιμοποιηθεί αυτός ο τύπος είναι δύο. Αρχικά, δεν υπάρχει 

μεταβολή στο χρόνο για να υπολογιστεί βάσει της τυπικής απόκλισης. Δηλαδή δεν 

μπορεί να χρησιμοποιηθεί ο τύπος του πηλίκου της διαφοράς προς την αρχική τιμή, 

διότι δεν υπάρχουν αρχικές αλλά προβλεπόμενες τιμές. Επιπλέον, παρόλο που οι 

αποκλίσεις βγαίνουν όλες θετικές, η προσέγγιση αυτή κρίνεται πιο κατάλληλη διότι 

υπολογίζει την πραγματική απόκλιση από την πραγματική τιμή. Σε περίπτωση που 

χρησιμοποιούταν άλλος τύπος δίχως τον υπολογισμό της απόλυτης τιμής της 

διαφοράς, οι αρνητικές αποκλίσεις θα αντιστάθμιζαν (offset) τις θετικές  όταν 
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(Σχ. 5.2)  

υπολογιζόταν οποιοσδήποτε μέσος όρος του δείγματος. Συνεπώς, οι τιμές τους δε θα 

ήταν αντιπροσωπευτικές. Ικανοποιητικά κρίνονται τα αποτελέσματα συνήθως όταν η 

απόκλιση αυτή είναι κάτω από 20%. 

Ο δεύτερος δείκτης απόκλισης ο οποίος θα υπολογιστεί είναι το μέσο τετραγωνικό 

ποσοστιαίο σφάλμα (Root Mean Squared Percent Error - RMSPE) σύμφωνα με την 

παρακάτω σχέση:  

 

  

Όπου:                                      

Ai: πραγματικές τιμές μεγεθών (Actual) 

Pi: προβλεπόμενες τιμές μεγεθών (Predicted) 

N: συνολικός αριθμός υπολογισμένων μεγεθών  

Το RMSPE  είναι μια στατιστική παράμετρος που υπολογίζεται ως η τετραγωνική ρίζα 

των μέσων τετραγωνικών ποσοστιαίων σφαλμάτων, γεγονός που το καθιστά 

ιδιαίτερα χρήσιμο όταν πρόκειται για δεδομένα που ποικίλλουν σε κλίμακα. Ένα 

χαμηλό RMSPE υποδηλώνει ένα μοντέλο με καλύτερη προσαρμογή, ενώ μια 

υψηλότερη τιμή υποδηλώνει μεγαλύτερη απόκλιση μεταξύ προβλέψεων και 

πραγματικών τιμών. Γενικότερα, αποδεκτές είναι συνήθως οι τιμές που φτάνουν 

μέχρι και το 20% για να θεωρείται η πρόβλεψη ικανοποιητική. 

Κατά τη διάρκεια υπολογισμού των αποκλίσεων, βρέθηκαν κάποιες αποκλίσεις 

εξαιρετικά μεγάλες σε λίγες και μεμονωμένες χιλιομετρικές θέσεις. Όπως 

παρατηρήθηκε, στις θέσεις αυτές, υπάρχει μία σταδιαία αύξηση του δείκτη 

ομαλότητας με την πάροδο του χρόνου μέχρι το 12ο  έτος αλλά ξαφνικά στο 13ο  έτος 

υπήρχε κατακόρυφη πτώση τους. Αυτό κατά κύριο λόγο μπορεί να σημαίνει ότι στα 

σημεία αυτά, ίσως συνέβησαν κάποια σφάλματα στις μετρήσεις. Όταν όμως τα 

μοντέλα παρατηρούν μια αυξητική τάση στο δείκτη με την πάροδο των ετών, 

αδυνατούν να προβλέψουν την τόσο ραγδαία αλλαγή τους προς τα κάτω. Συνεπώς, 

προβλέπουν ένα δείκτη αρκετά πιο αυξημένο από τον πραγματικό και γι’ αυτό 

παρατηρείται και αυτή η απόκλιση.  

Για τους παραπάνω λόγους, τα σημεία με απόκλιση μεγαλύτερη από 75% έχουν 

αφαιρεθεί από τη στατιστική ανάλυση, καθώς δεν αντιπροσωπεύουν σφάλμα των 
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αλγορίθμων αλλά εξωγενή παρέμβαση που άλλαξε τα δεδομένα. Συγκεκριμένα, από 

την Γραμμική Παλινδρόμηση έχει αφαιρεθεί το 0,93% των στοιχείων, από την 

Πολυωνυμική Παλινδρόμηση το 3,73% , από το μοντέλο Τυχαίων Δέντρων το 1,09% 

και από το μοντέλο Ενίσχυσης Κλίσης το 1,37%. 

5.2 Σύγκριση αποτελεσμάτων μοντέλου Γραμμικής Παλινδρόμησης 

Στην Εικόνα 5.1 παρουσιάζονται συγκριτικά οι προβλεπόμενες και οι μετρημένες 

τιμές ανά χιλιομετρική θέση για το 13ο έτος για το μοντέλο της Γραμμικής 

Παλινδρόμησης. Παρατηρείται ότι, εν γένει, οι προβλεπόμενες τιμές είναι 

μεγαλύτερες από τις μετρημένες.  

Αναλύοντας περαιτέρω τα στοιχεία, στην Εικόνα 5.2  αναπτύσσεται το διάγραμμα 

διασποράς για τις προβλεπόμενες και μετρημένες τιμές IRI για όλες τις χιλιομετρικές 

θέσεις και ποσοτικοποιούνται οι μεταξύ τους αποκλίσεις.
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Εικόνα 5.2 Σύγκριση προβλεπόμενων – μετρημένων τιμών με Γραμμική Παλινδρόμηση 
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Εικόνα 5.2 Διάγραμμα Διασποράς - Γραμμική Παλινδρόμηση 
 

Όπως φαίνεται και στο διάγραμμα της Εικόνας 5.2, οι αποκλίσεις των 

προβλεπόμενων από τις μετρημένες τιμές ήταν της τάξης του 16,79% για το SMAPE 

και του 29,07% για το RMSPE. 

Ο δείκτης SMAPE παρατηρείται ότι βρίσκεται κάτω από την τιμή του 20%, το οποίο 

έχει τεθεί ως μία ανώτατη ικανοποιητική τιμή, επομένως η προσέγγιση αυτή κρίνεται 

ικανοποιητική. Αυτό υποδεικνύει ότι υπάρχει μια γραμμικότητα στη σχέση μεταξύ 

ετών και τιμών IRI. 

Αντίθετα, ο δείκτης RMSPE σημειώνει τιμή άνω του 20% οπότε σύμφωνα με αυτόν οι 

τιμές δεν είναι ικανοποιητικές. Αυτό πιθανώς να οφείλεται στο ότι πολλές 

μετρημένες τιμές βρίσκονται κοντά στο μηδέν, κάτι που οδηγεί σε πολύ μεγάλα 

ποσοστιαία σφάλματα τον RMSPE. Επιπλέον, η βάση δεδομένων η οποία παρέχεται 

έχει μικρό εύρος, κάτι το οποίο ευνοεί τα μεγαλύτερα σφάλματα. 

 

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

Π
ρ

ο
β

λε
π

ό
μ

εν
ες

τι
μ

ές
 I

R
I (

m
/k

m
)

Μετρημένες τιμές IRI (m/km)

SMAPE= 16,79% 

RMSPE = 29,07% 



 58 

5.3 Σύγκριση αποτελεσμάτων μοντέλου Πολυωνυμικής 

Παλινδρόμησης 

Στην Εικόνα 5.3 παρουσιάζονται συγκριτικά οι προβλεπόμενες και οι μετρημένες 

τιμές ανά χιλιομετρική θέση για το 13ο έτος για το μοντέλο της Πολυωνυμικής 

Παλινδρόμησης. Παρατηρείται ότι, εν γένει, οι προβλεπόμενες τιμές είναι 

μεγαλύτερες από τις μετρημένες.  

Αναλύοντας περαιτέρω τα στοιχεία, στην Εικόνα 5.4  αναπτύσσεται το διάγραμμα 

διασποράς για τις προβλεπόμενες και μετρημένες τιμές IRI για όλες τις χιλιομετρικές 

θέσεις και ποσοτικοποιούνται οι μεταξύ τους αποκλίσεις.
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Εικόνα 5.3 Σύγκριση προβλεπόμενων - μετρημένων τιμών IRI με Πολυωνυμική Παλινδρόμηση 
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Εικόνα 5.4 Διάγραμμα Διασποράς - Πολυωνυμική Παλινδρόμηση 
 

Όπως φαίνεται και στο διάγραμμα της Εικόνας 5.4, οι αποκλίσεις των 

προβλεπόμενων από τις μετρημένες τιμές ήταν 18,04% για τον δείκτη SMAPE και  

37,04% για τον δείκτη RMSPE. 

Μέσα από τον δείκτη SMAPE, παρατηρείται ότι η προσέγγιση αυτή κρίνεται 

ικανοποιητική εφόσον η τιμή του βρίσκεται κάτω από το 20%. 

Ο δείκτης RMSPE ωστόσο, προκύπτει με μία αρκετά μεγάλη τιμή, υποδηλώνοντας 

έτσι την μη ύπαρξη πολυωνυμικής σχέσης μεταξύ ετών και δείκτη ομαλότητας. 

5.4 Σύγκριση αποτελεσμάτων μοντέλου «Τυχαία Δέντρα» 

Στην Εικόνα 5.5 παρουσιάζονται συγκριτικά οι προβλεπόμενες και οι μετρημένες 

τιμές ανά χιλιομετρική θέση για το 13ο έτος για το μοντέλο των Τυχαίων Δέντρων. 

Παρατηρείται ότι, εν γένει, οι προβλεπόμενες τιμές είναι μεγαλύτερες από τις 

μετρημένες.  

Αναλύοντας περαιτέρω τα στοιχεία, στην Εικόνα 5.6  αναπτύσσεται το διάγραμμα 

διασποράς για τις προβλεπόμενες και μετρημένες τιμές IRI για όλες τις χιλιομετρικές 

θέσεις και ποσοτικοποιούνται οι μεταξύ τους αποκλίσεις. 
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Εικόνα 5.5 Σύγκριση προβλεπόμενων - μετρημένων τιμών IRI με Τυχαία Δέντρα 
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Εικόνα 5.6 Διάγραμμα Διασποράς - Τυχαία Δέντρα 

 

Όπως αποτυπώνεται και στο διάγραμμα της Εικόνας 5.6, οι αποκλίσεις των 

προβλεπόμενων από τις μετρημένες τιμές ήταν 15,28% για τον δείκτη SMAPE και  

23,92% για τον δείκτη RMSPE. 

Σύμφωνα με τον δείκτη SMAPE, η προσέγγιση μέσω του μοντέλου των Τυχαίων 

Δέντρων είναι ικανοποιητική, εφόσον σημειώνει μία σχετικά μικρή τιμή. 

Επιπλέον, θα μπορούσε να ειπωθεί ότι η προσέγγιση είναι ικανοποιητική και 

σύμφωνα με τον δείκτη RMSPE, καθώς παρατηρείται μία σχετική υπέρβαση από την 

τιμή που έχει τεθεί ως η μέγιστη ικανοποιητική, χωρίς όμως να αποκλίνει σημαντικά. 

Η μεγαλύτερη τιμή του δείκτη RMSPE οφείλεται στον τύπο  υπολογισμού του δείκτη, 

ο οποίος λαμβάνει υπόψη διαφορετικές παραμέτρους. 
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5.5 Σύγκριση αποτελεσμάτων μοντέλου Ενίσχυσης Κλίσης 

Στην Εικόνα 5.7 παρουσιάζονται συγκριτικά οι προβλεπόμενες και οι μετρημένες 

τιμές ανά χιλιομετρική θέση για το 13ο έτος για το μοντέλο της Ενίσχυσης Κλίσης. 

Παρατηρείται ότι, εν γένει, οι προβλεπόμενες τιμές είναι μεγαλύτερες από τις 

μετρημένες.  

Αναλύοντας περαιτέρω τα στοιχεία, στην Εικόνα 5.8  αναπτύσσεται το διάγραμμα 

διασποράς για τις προβλεπόμενες και μετρημένες τιμές IRI για όλες τις χιλιομετρικές 

θέσεις και ποσοτικοποιούνται οι μεταξύ τους αποκλίσεις. 
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Εικόνα 5.7 Σύγκριση προβλεπόμενων - μετρημένων τιμών με Ενίσχυση Κλίσης 
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Εικόνα 5.8 Διάγραμμα Διασποράς - Ενίσχυση Κλίσης 
 

Για το μοντέλο Ενίσχυσης Κλίσης, υπολογίστηκαν δείκτης SMAPE 15.96% και δείκτης 

RMSPE 26,44%. 

Το μοντέλο αυτό παρουσιάζει ικανοποιητικές προσεγγίσεις σύμφωνα με τον δείκτη 

SMAPE, κάτι το οποίο δικαιολογείται βάσει της δομής του μοντέλου το οποίο 

ομαδοποιεί τις πληροφορίες με παρόμοιο τρόπο με αυτό των Τυχαίων Δέντρων.  

Αντίθετα, ο δείκτης RMSPE βρίσκεται για άλλη μια φορά εκτός επιτρεπτού ορίου και 

σύμφωνα με αυτόν, η προσέγγιση του μοντέλου δεν είναι ικανοποιητική. 

 

 

 

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

Π
ρ

ο
β

λε
π

ό
μ

εν
ες

τι
μ

ές
 I

R
I (

m
/k

m
)

Μετρημένες τιμές IRI (m/km)

SMAPE= 15,96% 

RMSPE = 26,44% 



 66 

5.6 Συνολική σύγκριση αποτελεσμάτων 

Τα συνολικά αποτελέσματα των αποκλίσεων (μετρημένων-προβλεπόμενων τιμών 
ομαλότητας) που υπολογίστηκαν παρατίθενται στις Εικόνες 5.9 και 5.10 αλλά και σε 
μορφή πίνακα (Πίνακας 5.1):  

 

 

Εικόνα 5.9 Συγκεντρωτικές τιμές SMAPE 

 

 

Εικόνα 5.10 Συγκεντρωτικές τιμές RMSPE 
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Πίνακας 5.1 Τιμές SMAPE - RMSPE 

 Linear 
Regression 

Polynomial 
Regression 

Random 
Forests 

Gradient 
Boosting 

SMAPE 16,79% 18,04% 15,28% 15,96% 

RMSPE 29,07% 37,04% 23,92% 26,44% 

 

Οι δύο αυτοί διαφορετικοί στατιστικοί δείκτες αξιολόγησης παρουσιάζουν σε κάθε 

μοντέλο αρκετά σημαντική διαφορά μεταξύ τους και αυτό οφείλεται σε ποικίλους 

παράγοντες. Αρχικά, ο δείκτης RMSPE επηρεάζεται περισσότερο όταν υφίστανται 

μεγάλες διαφορές μεταξύ μετρημένων και προβλεπόμενων τιμών. Εάν ένα μοντέλο 

έχει μεγάλα σφάλματα, ο RMSPE θα το αντανακλά αυτό πιο έντονα. Αντιθέτως, ο 

δείκτης SMAPE οδηγεί στην πιο συμμετρική αντιμετώπιση των προβλέψεων είτε 

προκύπτουν θετικές είτε αρνητικές αποκλίσεις. Επιπλέον, ο RMSPE μπορεί να είναι 

ασταθές εάν οι μετρημένες τιμές είναι κοντά στο μηδέν, οδηγώντας σε πολύ μεγάλα 

ποσοστιαία σφάλματα ενώ ο SMAPE αποφεύγει τη διαίρεση με το μηδέν 

χρησιμοποιώντας τον μέσο όρο των μετρημένων και των προβλεπόμενων τιμών στον 

παρονομαστή. 

Όσον αφορά τον δείκτη SMAPE, κανένα μοντέλο δεν ξεπέρασε την τιμή του 20%  η 

οποία έχει τεθεί ως η μέγιστη αποδεκτή. Επομένως, στοιχειοθετείται ότι και τα 

τέσσερα μοντέλα προσεγγίζουν ικανοποιητικά τις μετρημένες τιμές. 

Σύμφωνα με τον RMSPE, κανένα μοντέλο δεν δίνει ιδιαίτερα ικανοποιητικά 

αποτελέσματα αφού όλες οι τιμές του δείκτη ξεπερνούν το 20% αλλά αυτό 

ενδεχομένως οφείλεται και στον μικρό όγκο δεδομένων και την έλλειψη 

πληροφοριών. 

Ωστόσο, και οι δυο δείκτες παρά τις υπερβάσεις του RMSPE, συγκλίνουν στο 

συμπέρασμα ότι ίσως θα μπορούσε να υποδειχθεί ως καλύτερη προσέγγιση από τα 

τέσσερα παραπάνω μοντέλα αυτή του μοντέλου Τυχαίων Δέντρων (Random Forests). 

Οι τιμές IRI που προκύπτουν μέσα από αυτό το μοντέλο, σημειώνουν και για τους δύο 

δείκτες απόκλισης την μικρότερη τιμή τους συγκριτικά με τα υπόλοιπα μοντέλα. 
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6. ΣΥΜΠΕΡΑΣΜΑΤΑ 
Στο πλαίσιο της παρούσας διπλωματικής εργασίας, αναδείχθηκε η αξία της 

ενσωμάτωσης της Τεχνητής Νοημοσύνης στη μηχανική των οδοστρωμάτων και 

ειδικότερα στην αξιολόγηση της συμπεριφοράς των οδοστρωμάτων μέσα από την 

πρόβλεψη της ομαλότητας τους.  

Από τη βιβλιογραφική ανασκόπηση, προέκυψε ότι οι μέθοδοι Τεχνητής Νοημοσύνης 

χρησιμοποιώντας νέες τεχνολογίες έχουν υπεισέλθει στις μεθόδους σχεδιασμού και 

αξιολόγησης των οδοστρωμάτων, με στόχο την απομείωση του χρόνου και του 

κόστους των αναλύσεων. Έτσι, ολοένα και περισσότερη έρευνα διεξάγεται με σκοπό 

την ανάπτυξη μοντέλων, τα οποία θα διευκολύνουν την πρόβλεψη της συμπεριφοράς 

των οδοστρωμάτων.  

Επιπρόσθετα, μέσα από την εφαρμογή η οποία πραγματοποιήθηκε για πρόβλεψη 

των τιμών του δείκτη ομαλότητας, προέκυψαν ποικίλα συμπεράσματα.  

Αρχικά, παρατηρήθηκε ότι οι τιμές του δείκτη SMAPE, εντοπίστηκαν σε όλα τα 

μοντέλα να μην ξεπερνούν το 20%, η οποία είναι η μέγιστη αποδεκτή τιμή για να 

θεωρούνται ικανοποιητικές οι προσεγγίσεις στις μετρημένες τιμές. Επομένως, 

σύμφωνα με τον δείκτη SMAPE, και τα τέσσερα μοντέλα δίνουν ικανοποιητικές 

προσεγγίσεις για τις τιμές IRI. Αντιθέτως, όσον αφορά τον δείκτη RMSPE 

παρατηρήθηκε ότι και στα τέσσερα μοντέλα οι τιμές του ξεπερνούσαν το ποσοστό 

του 20%, το οποίο θεωρείται και για αυτόν το μέγιστο αποδεκτό, υποδηλώνοντας ότι 

σύμφωνα με αυτόν κανένα μοντέλο δεν μπορεί να δώσει μια ικανοποιητική 

προσέγγιση των τιμών IRI. Αυτό ενδεχομένως οφείλεται στον διαφορετικό τρόπο 

υπολογισμού του σφάλματος για τον καθένα, αφού μέσω του δείκτη SMAPE οι 

προβλέψεις οδηγούνται σε πιο συμμετρικές τιμές μεταξύ θετικών και αρνητικών 

αποκλίσεων. 

Παρ΄όλα αυτά, ο συγκερασμός των αποτελεσμάτων καταδεικνύει ότι ενδεχομένως, 

το μοντέλο το οποίο προσεγγίζει καλύτερα τις μετρημένες τιμές είναι αυτό των 

Τυχαίων Δέντρων (Random Forests) αφού και οι δύο στατιστικοί δείκτες (SMAPE και 

RMSPE) στο συγκεκριμένο μοντέλο σημειώνουν την χαμηλότερη τιμή τους συγκριτικά 

με τις υπόλοιπες. 

Επίσης, είναι εξίσου σημαντικό να σημειωθεί ότι σε όλα τα μοντέλα, οι 

προβλεπόμενες τιμές IRI ήταν πάντα μεγαλύτερες από τις μετρημένες. Επομένως, για 

κάθε περίπτωση που θα χρησιμοποιούνταν οι προβλεπόμενες τιμές τις οποίες εξάγει 
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ο αλγόριθμος, η αξιολόγηση του οδοστρώματος θα πραγματοποιούταν υπέρ της 

ασφαλείας, θεωρώντας μεγαλύτερες τιμές από αυτές που υφίστανται.  

Τέλος, αποτελεί σημαντικό συμπέρασμα το ότι τα μοντέλα δημιουργούν ακριβείς ή 

λιγότερο ακριβείς προβλέψεις με βάση το εύρος δεδομένων τα οποία 

χρησιμοποιούνται για την ανάπτυξη τους. Επομένως, αν ο στόχος είναι η 

ελαχιστοποίηση του σφάλματος στον καλύτερο δυνατό βαθμό, απαιτούνται ποικίλα 

δεδομένα από προηγούμενα έτη (π.χ. κυκλοφοριακά δεδομένα, τύπος 

οδοστρώματος, περιβαλλοντικές συνθήκες) για να τροφοδοτήσουν και να 

εκπαιδεύσουν το μοντέλο. 

Μία πρόταση για περαιτέρω έρευνα σχετικά με εφαρμογές Τεχνητής Νοημοσύνης  

στη μηχανική των οδοστρωμάτων θα μπορούσε να είναι η πρόβλεψη φθοράς 

οδοστρωμάτων μέσα από μοντέλο μηχανικής μάθησης που θα έχει εκπαιδευτεί με 

εικόνες και υπολογιστικά δεδομένα. Επιπλέον, θα μπορούσε να αναπτυχθεί σύστημα 

που θα αναλύει εικόνες από drones ή κάμερες οχημάτων και θα ανιχνεύει, καθώς και 

θα ταξινομεί φθορές οδοστρωμάτων αυτόματα. Τέλος, για την έγκαιρη συντήρηση 

και αποκατάσταση των οδοστρωμάτων θα μπορούσαν να δημιουργηθούν μοντέλα  

τα οποία θα προέβλεπαν την κατάλληλη στιγμή και τα απαραίτητα υλικά που 

απαιτούνται για να αποκατασταθούν οι φθορές με τον βέλτιστο και οικονομικότερο 

τρόπο.  
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