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The urban transportation landscape is facing many challenges due to the introduction of a 

variety of mobility solutions for travelers which together with innovations of Information and 

communication Technologies (ICT) subvert traffic management policies. Policy makers have to 

reconsider the applied traffic management measures in a way that automation and 

cooperation requirements of today’s services are taken into account together with the always 

increasing needs for green and sustainable mobility solutions. Nevertheless, even in this ever-

changing transportation system, drivers remain the protagonists. Therefore, the understanding 

of decision-making while driving, as well as the investigation of driving habits adopted by 

drivers remains an active field of research for more than a decade.  

Abnormal driving has been linked with increased crash risk and, thus, the improvement of 

driving behavior is considered critical for improving road safety. In addition, previous research 

has implied that the improvement of individual driving behavior may also result in an 

improvement of traffic conditions. Nevertheless, no evidence has been provided to support 

this statement, and the consequences of adjusting individual driving behavior on a network-

level still remain unclear.  

Within this context, the work contained in this dissertation is motivated by two main driving 

forces: i) the need to develop a driving recommendation system that treats each driver as an 

individual and proposes actions that meet his/her own driving preferences and, ii) the need to 

explore the actual impact of applying a personalized recommendation system on the road 

network. 

Main objectives and research questions 

The main objective of this dissertation is to design a personalized driving recommendation 

system which is based on deep reinforcement learning algorithms and aims at enhancing 

driving safety through the mitigation of aggressiveness and other unsafe driving habits. 

Subsequently, the impact of controlling individual driving behavior is assessed with regards to 

network performance and road safety, as well as the levels of harmful emissions by properly 

adjusting parameters of traffic models in a city-wide scenario setting using microsimulation. 

The above-described overarching goal of this dissertation can be divided in three major 

objectives as described below: 

1. Exploit smartphone sensed data to understand driving behavior  



 

 

2. Develop a traffic theory compatible personalized recommendation framework for 

improving driving behavior 

3. Assess the impact of the recommendation system in traffic, safety and emissions 

The concept of driving behavior analysis is not new, and, thus, a thorough review of the 

literature was conducted, at first, with the aim to identify research gaps and highlight the 

challenges and caveats that arise when smartphone crowd-sensed data are exploited for this 

purpose. The review of the literature resulted in the formation of the following 7 research 

questions. 

Question 1 (Q1): Which are the main driving profiles that cover the wide range of driving 

behavior and how can they be identified by exploiting smartphone data? 

Question 2 (Q2): Is it possible to classify the overall driving behavior of drivers into groups that 

share common driving characteristics, and, if so, to what extent could it be 

classified? 

Question 3 (Q3): Could Artificial Intelligence techniques be exploited within the framework of 

a driving recommendation system and ensure the requires degree of 

personalization of the produced recommended actions? 

Question 4 (Q4): Which is the most appropriate Reinforcement Learning algorithm for 

supporting human decision making? 

Question 5 (Q5): Is there a link between raising self-awareness and improving conditions of 

the entire network? To what extent could the improvement of individual 

behavior affect traffic conditions? 

Question 6 (Q6): What kind of impact does the controlling of individual driving behavior have 

on driving and road safety? 

Question 7 (Q7): How are emissions affected by the controlling of individual driving behavior? 

Is there a significant change on environmental conditions when drivers 

improve their behavior? 

Methodological approach 

The recommendation system proposed within this dissertation is basically a decision support 

system for drivers that aims at mitigating aggressiveness and riskiness. Driving is a complex 

task since it requires from the driver to take both strategic and dynamic decisions as well as 

adapt their behavior to emerging conditions of the network. Contrary to the already developed 

ADAS, the system here has the following three state-of-the-art characteristics: 

1. It is personalized, which means that it recommends the best driving actions to each 

individual taking into account their specific requirements and driving preferences. 

2. It is self-aware, which means that the system takes into account previous behavior of 

each individual driver in order to propose the most suitable driving recommendations.  



 

 

3. It is autonomous, meaning that it does not require any external input from the network 

or the traffic. Driving recommendations aim to improve individual driving behavior on its core, 

namely acceleration and deceleration decisions. 

The development of the recommendation system is based on a Reinforcement Learning 

algorithm which is capable of producing the optimal behavior alteration for each driver given 

the way they have drove over their last trip. 

In order to answer the research questions and achieve the overarching goal of the dissertation, 

an inclusive methodological framework is proposed which is based on a mixture of 

unsupervised learning and Deep Reinforcement Learning algorithms as depicted in Figure I.  

 

 
Figure I. Overview of the methodological framework 

Starting from raw measurements of GPS location, acceleration and speed, as provided by a 

telematics application established on smartphone devices, driving features are defined that 

describe short-term and long-term driving behavior. Following, these features are utilized in 

an unsupervised learning framework to identify driving profiles that can be used to describe 

each driver’s overall driving behavior (Q1, Q2). Driving behavior is defined at:  

• a trip level, which corresponds to the way the driver performed a specific trip, and  

• a user level, which corresponds to the overall driving behavior of a specific driver in all 

of his trips (driving footprint).  

A two-level k-means clustering algorithm is implemented, in a selection of driving features, in 

order to distinguish aggressive from non-aggressive trips within the first level, and then further 



 

 

distinguish between risky and distracted driving at the second level of clustering. After this 

procedure, each trip was assigned to a specific driving profile (Q1), and then, using statistical 

measurements, the overall driving behavior of each driver is identified (Q2).  

Once driving behavior per trip is identified, and all drivers were separated into groups based 

on their overall driving behavior, the driving recommendation framework is designed and the 

appropriate algorithms are developed, using state-of-the-art Reinforcement Learning models 

(Q3). The aim of the Reinforcement Learning algorithm is to learn the optimal policy and 

suggest the appropriate action that leads to the best possible behavior. Specifically, when 

dealing with driving behavior recommendations, every action refers to an adjustment of the 

vehicle’s kinematic characteristics including the adjustment of the vehicle’s speed and 

acceleration, which span within a continuous range of values. To this end, the RL algorithm 

developed in this work should retain one extra property, the ability to handle continuous state 

and action spaces (Q4). The RL agents follow an actor-critic approach based on the Deep 

Deterministic Policy Gradient algorithm and are both implemented as deep artificial neural 

networks, the hyperparameters and the structure of which emerge after an exhaustive grid 

search. The algorithms are trained using sequences of driving trips of the same driver as input, 

while the output of each RL controller is the optimal alteration in the acceleration of each 

driver, given the way they drove in their previous trip.  

The structure of the system is such that there is a full mapping to microscopic standardization 

and traffic flow control logic. In correspondence with widely used car following models, the 

proposed algorithm acts as an estimation and prediction function of the acceleration at which 

the vehicle should move.   

Finally, the impact of improving individual driving behavior is assessed through a comparative 

before-after microsimulation analysis, with respect to road safety, traffic and the environment 

(Q5, Q6, Q7). Using the road network of Athens, Greece, a microsimulation scenario for the 

morning rush hour demand, was set. For the initial conditions of the network the vehicles move 

according to the characteristics governing each of the driving behaviors detected in the first 

step of the methodological framework, while the traffic composition is based on the actual 

distribution of trips over the driving profiles. In this way, driving diversity is ensured between 

the vehicles and the traffic conditions in the network are simulated as realistically as possible. 

The data 

For the purpose of the specific research, data were collected through an innovative 

smartphone application developed by Oseven Telematics. The naturalistic driving database 

included 153,953 trips made from 696 unique drivers from December 2017 to August 2019. 

The trips were performed all around Greece, nevertheless the majority of them were conducted 

within the Region of Attica. For each trip, a variety of variables are available which include 

statistical measurements of acceleration and deceleration during a trip, speeding 

measurements that describe smoothly and with speed excess driving, as well as mobile usage 



 

 

indicators that describe how cautious the driver is. Table I presents the driving parameters 

used in the specific research.  

Table I. Driving parameters per trip 

Variable Description Unit 

harsh_acc_per_min   Average number of harsh accelerations performed per minute events/min 

acc_avg Average acceleration m/s2 

acc_std   Standard deviation of acceleration m/s2 

acc_q90 90% percentile of acceleration m/s2 

acc_max Maximum acceleration m/s2 

harsh_brk_per_min Average number of harsh decelerations performed per minute events/min 

dec_avg Average deceleration m/s2 

dec_std Standard deviation of deceleration m/s2 

dec_q90 90% percentile of deceleration m/s2 

dec_max Maximum deceleration m/s2 

speed_max Maximum speed km/h 

mbu Percentage of driving with mobile usage % 

speeding_percentage Percentage of driving with speed over the speed limit % 

 

All data provided by Oseven are in a fully anonymized format. The main characteristics of the 

sample used in the specific research are presented in Table II. 

Table II. Main characteristics of the sample used in this research 

 Total Safe Unsafe 

Number of trips 153,953 66,566 87,387 

Number of drivers 696 197 499 

Average number of trips per driver 221 

Minimum number of trips per driver 16 

Average km travelled per driver 2,510 km 

Driving behavior analysis 

In order to achieve the first objective of this dissertation, which is to exploit smartphone sensed 

data to understand driving behavior, a k-means clustering algorithm is implemented in to 

distinct levels.  

For the first level of clustering, the number of clusters is set to k=2 and clustering is 

implemented on Euclidean distance matrix. Two of the variables that are used for the above 

procedure describe the number of harsh alterations of the longitudinal position of the vehicle 

(acceleration and deceleration), while the rest of them are essentially indices of the average 

acceleration and deceleration of the trip. The results of this first implementation of the k-

means clustering are presented in Table III. 



 

 

Table III. 1st level clustering results 
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Aggressive trips 0.150 0.2081 1.748 1.525 3.847 -1.968 1.843 -4.547 71263 

Non-aggressive trips 0.028 0.051 1.137 1.052 2.503 -1.282 1.286 -2.926 82690 

 

Based on the clusters’ centers, the trips can be distinguished between aggressive and non–

aggressive driving, since trips belonging to the first cluster are featured by aggressive driving 

characteristics, such as great acceleration and deceleration metrics and significantly higher 

rates of harsh events per minute of driving. 

The second level of k-means clustering was applied separately to the two groups that emerged 

from the first level of clustering using two driving parameters: the percentage of driving with 

mobile usage and the percentage of driving with speed over the speed limit. Results of this 

second level of clustering are presented in the table below (Table IV). 

Table IV. 2nd level clustering results 
 Percentage of mobile 

usage 

Percentage of driving with 

speed over the speed limit 
Number of trips 

Aggressive trips 

Distracted 0.511 0.062 4505 (2.9%) 

Aggressive 0.019 0.032 54394 (35.3%) 

Risky 0.023 0.269 12364 (8%) 

Non-aggressive trips 

Risky 0.021 0.306 12494 (8.1%) 

Moderate 0.014 0.029 66566 (43.2%) 

Distracted 0.514 0.057 3630(2.4%) 

 

The resulting clusters seem to reveal richer driving profiles: distracted driving is recognized by 

higher values of the percentage of mobile usage while driving, while risky driving is identified 

through higher values of percentage of driving with speed over the speed limit. The two 

remaining clusters which have the lower values in both measures are annotated as “aggressive” 

and “moderate” for the aggressive and non-aggressive trips subsets respectively.  

In order to separate drivers into groups with the same driving preferences, an average driving 

profile of each individual was identified by applying a simple rule. All four driving profiles 

indicating an unsafe driving behavior (Risky, Distracted, Aggressive-risky, Aggressive-

distracted) were grouped as the worst class (3), aggressive trip profiles constitute the second 

class (2), while trips with typical characteristics belong to the first class (1), as shown in Figure 

II. For each individual driver, an average from all their trips is estimated and drivers are 

separated into two main groups based on their average behavior, as follows: 



 

 

• Moderate/typical drivers: trip average ≤ 1.5 

• Reckless drivers: trip average > 1.5 

 

Figure II. Trip profile grouping for drivers’ average driving profile estimation 

For each individual driver, an average of the annotations from all their trips is estimated, where 

trip average less than 1.5 implies a moderate/typical driver and trip average greater than 1.5 

refers to reckless drivers. Based on some statistical analysis, trip average less than 1.5 indicates 

that at least 60% of the trips performed by a driver are characterized by “moderate” driving 

behavior. In order for the developed controller to be as adaptive as possible to each 

individual’s behavior, the proposed framework should be very strict when characterizing a 

driver as “typical/moderate” in order to avoid suggesting changes in behavior that the driver 

himself is impossible to follow as they will be far from his own average behavior. 

RL: concept, principles and model development 

In order to develop the Self-Aware Driving Recommendation Assistant (SADRA), a structured 

procedure is followed. First, the total trip database is divided into two, based on the average 

driving profile of each driver. In particular, the first database includes the trips of all drivers 

belonging to the "typical-safe" drivers, while the second includes all the trips of drivers with 

unsafe average driving behavior. For the sake of brevity, from this point on, the RL controller 

that corresponds to the “typical” drivers is referred to as SADRA – I, while the corresponding 

controller for the reckless drivers is referred to as SADRA – II respectively. 

Every RL agent consists of three main components: states (s), actions (a) and rewards (r). In 

each timestep the agent observes the current state of the environment and takes the 

appropriate action from the set of the possible actions. Then, the agent receives a reward 

which measures the success or failure of the agent’s actions for the given state.  

In this study, the environment states are defined through a five-dimensional vector that 

describes how a driver drove during their trip and includes trip’s average acceleration (aavg), 

90% percentile of acceleration (a90), average deceleration (davg), 90% percentile of deceleration 

(d90) and percentage of driving with speed over the speed limit (speeding): 

𝒔 = {𝑎𝑎𝑣𝑔, 𝑎90, 𝑑𝑎𝑣𝑔, 𝑑90, 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔} 



 

 

Our recommendation system is not context-aware which means that its ultimate goal is to 

improve individual’s personal driving style independently from the road setting they are 

driving in (type of road, traffic conditions, etc.). The selection of the appropriate speed is not 

independent from the road geometry and road traffic, as well as deceleration decisions are 

not always independent from the leading vehicle’s behavior and traffic signals. Therefore, the 

only parameter that purely describes one’s driving style is the acceleration, as it is only 

dependent on the driver’s perception and preference between smoothly or harshly 

accelerating. Indeed, in recent literature, a driver’s driving style is usually defined by their 

acceleration profile. To this end, actions that the system produces and are proposed to the 

driver belong to a continuous action space which is defined by a two-dimensional vector 

including a change in average acceleration and in the 90% percentile of acceleration, which 

define the usual/preferred acceleration for the entire trip in regular situations and the value 

that should not be exceeded, e.g., when performing overtaking maneuvers, except from cases 

of emergency: 

𝒂 = {𝑑𝑎𝑎𝑣𝑔, 𝑑𝑎90} 

For the sake of simplicity from hereon, the 90% quartile of the acceleration may be equally 

referred to as “maximum acceleration”. 

A key component of the RL agent is the reward function. The aim of the reward function is 

twofold; to evaluate the current state and the transition between states. In other words, the 

driving behavior at each trip, as well as the change in driving behavior between successive 

trips of the same user are evaluated. For this purpose, a custom driving evaluation function 

had to be constructed first. The score of each trip was estimated by the distance of this specific 

trip from the center of the moderate profile (the center of the cluster), in order to quantify how 

far each individual’s behavior is from the typical (moderate) behavior. For the purpose of this 

analysis, the Mahalanobis distance is used to estimate the distance between each trip and the 

moderate profile.  

Trip evaluation is performed on the basis of the following formula: 

𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑒
−𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑖 ∗ 

Ɱ(𝑖,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑝𝑟𝑜𝑓𝑖𝑙𝑒)  

𝑄75(Ɱ)  

where i is an individual trip and Ɱ is the Mahalanobis distance. Here, the 3rd quartile of the 

Mahalanobis distance is used instead of the maximum value in order for the score function to 

be stricter with drivers whose behavior excludes more than 75% of the typical (moderate) 

behavior. 

The reward function for a driver moving from one trip to the next one was established based 

on the following formula: 



 

 

𝒓 =  𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒𝑖+1 (1 +
𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒i+1 − 𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒𝑖

100
 ) 

Once the main components for the development of the RL controllers were estimated, the 

data were organized in the following format: 

(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒) 

For every unique driver in the dataset, their trips were sorted in an ascending order according 

to each trips starting date. The training samples were tuples of sequential trips of a specific 

driver along with the corresponding action and reward of the transition from the first trip to 

the succeeding one. It should be noted that for every distinct driver in the dataset, their first 

trip was used only as “state” while their last trip of was used only as “next state”. Following this 

data preparation procedure, 33,440 unique data samples were constructed for training SADRA 

I and 119,817 unique data samples were used for the training process of SADRA II. 

The RL controllers are developed based on the Deep Deterministic Policy Gradient (DDPG) 

algorithm which implements an actor-critic approach to learn a policy and produce the optimal 

actions. Thus, for each controller two neural networks are developed; representing the actor 

and the critic respectively. The actor (μ) and critic (Q) networks for both the safe and unsafe 

drivers’ subsets were trained following the procedure of Algorithm below. 

DDPG Algorithm implementation 

Initialize critic 𝑄(𝑠, 𝑎|𝜃𝑄) and actor 𝜇(𝑠|𝜃𝜇) networks using rewards as Q-values 

Set the above as initial target networks (𝑄′ and 𝜇′) 

Split the sample into Μ minibatches 

for minibatch=1, Μ do 

   Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′) 

   Update critic by minimizing the loss: 𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄))

2
𝑖  

   Update the actor policy using the sampled policy gradient:  

∇𝜃𝜇
𝐽 ≈

1

𝑁
∑[∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡) ∇𝜃𝜇

𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑡
]

𝑡

 

   Update the target networks: 

𝜃𝑄′  ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇′  ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′  

end for 

An exhaustive grid search was performed in order to conclude to the final architecture of the 

two networks. Specifically, all possible combinations of the networks’ structures and 

parameterization, within a range of reasonable values, have been examined and compared in 

order to detect the optimal one. The parameters that were taken into consideration are: 

number of hidden layers, number of neurons and activation of each layer, optimization 

algorithm and learning rate, batch size and number of training epochs, as shown in Table V. 



 

 

Table V. Hyperparameters of the Critic and Actor networks for both SADRA I and II 
Hyperparameters Critic network Actor network 

 SADRA I – Safe drivers 

Number of hidden layers 6 3 

Number of neurons per layer (64,32,16,16,32,64,1) (128,64,32,2) 

Epochs 200(initial network:110) 200(initial network:110) 

Batch size 150(initial network:150) 150(initial network:150) 

Activation ReLU ReLU 

Optimizer Adam Adam 

Learning rate 0.001 0.0001 

 SADRA II – Unsafe drivers 

Number of hidden layers 6 3 

Number of neurons per layer (32,16,8,8,16,32,1) (128,64,32,2) 

Epochs 170(initial network:170) 210(initial network:210) 

Batch size 250(initial network:250) 250(initial network:100) 

Activation ReLU ReLU 

Optimizer Adam Adam 

Learning rate 0.0001 0.0001 

Simulation setting 

The quantification of the impact of adopting driving recommendations by all drivers on traffic, 

road safety and emissions was performed under a network-level microscopic simulation 

scenario. The SUMO simulation software is used and its default car-following model, Krauss 

model, which is a microscopic, space-continuous model based on the safe speed; the driver of 

the following car adopts a safe speed which allows them to adapt to the deceleration of the 

leading vehicle. 

The case study for the simulation experiments is the inner-ring network of Athens, Greece. The 

network consists of 1,293 nodes/intersections and 2,572 edges. The total length of the network 

is 348 kilometers. The calibration of the network led to the definition of 86,054 vehicles, 

achieving a total of 1,393,634 counts (97.47% of the total counts extracted from the Aimsun 

simulator) and a GEH value below 5 (GEH < 5) for 95.26%. 

Two distinct scenarios were designed both corresponding to the demand of the Athens’ Road 

network during the morning peak hour (8:00 – 9:00 AM). First, the initial conditions of the 

network are simulated in order to estimate the performance of traffic when vehicles move 

around, based on the characteristics that govern the six identified driving profiles. In order to 

ensure the robustness of the results, simulation was performed in 10 replications with ten 

different seed numbers. Stochasticity is an important aspect of reproducing reality in a 

simulation scenario, since it adds randomness over the distributions of difference aspects of 

the simulation (e.g., route distributions, vehicle type distributions). Subsequently, driving 

recommendations were produced offline for every served vehicle based on the way each 

vehicle performed their trip. The recommendations were produced from the corresponding RL 

controllers using as input the state of the trip (average acceleration, 90% percentile of 



 

 

acceleration, average deceleration, 90% percentile of deceleration, speeding percentage) and 

as output the optimal alteration of the maximum acceleration. It should be highlighted here 

that although the developed RL controllers produce a two-dimensional vector that includes 

alterations on both the average and the maximum acceleration, only the maximum 

acceleration was exploited during the simulation runs, since the Krauss model takes into 

account only the maximum values of acceleration and deceleration.  

Finally, a second simulation run was performed, where previously served vehicles follow the 

proposed recommendations, namely an alternation of their maximum acceleration, while the 

rest of the traffic follows the distribution among the six driving profiles.  

The behavior that implies each driving profile was simulated through the adjustment of the 

car-following model. The car-following model can be parametrized by a number of 

parameters: the maximum acceleration of the vehicle (accel), the maximum deceleration of the 

vehicle (decel), the maximum velocity of the vehicle (maxSpeed), the maximal physically 

possible deceleration for the vehicle (emergencyDecel) and the vehicles’ expected multiplicator 

for lane speed limits (speedFactor). At first, the current (initial) state of the road traffic is 

simulated in SUMO using the six defined driving profiles, whose parameters were introduced 

to the Krauss model of different vehicle types, as shown in Table VI. 

Table VI. Car-following model parameters for each vehicle type 

Vehicle types  

(trip profiles) 

Car-Following Model Parameters 

accel decel emergencyDecel maxSpeed speedFactor 

(m/s2) (m/s2) (m/s2) (km/h) (mean, min, max) 

Moderate 2.519 -2.942 -5.909 64.51 (0.029, 0, 0.168) 

Aggressive 3.817 -4.483 -18.083 66.93 (0.033, 0, 0.151) 

Risky 2.392 -2.824 -5.328 100.28 (0.306, 0.1627, 0.96) 

Distracted 2.601 -2.990 -5.112 67.38 (0.057, 0, 0.631) 

Aggressive-risky 3.944 -4.825 -25.884 100.8 (0.269, 0.147, 0.907) 

Aggressive-distracted 3.939 -4.553 -10.845 71.99 (0.062, 0, 0.744) 

For the initial state of the network, the six distinct vehicle types were created in a route file, 

with the corresponding car-following model’s parametrization. The route of each vehicle was 

also identified in the route file, as it was estimated from the path assignment of Aimsun. In 

one hour of simulation for the morning peak, about 58% of the total demand was inserted in 

the network and 28% of the vehicles completed their journey within this time. 

Subsequently, for each vehicle that reached their destination the following parameters were 

estimated for each trip: 

• average acceleration 

• 90% percentile of acceleration 

• average deceleration 

• 90% percentile of deceleration 

• speeding percentage 



 

 

These driving characteristics were used as input to the RL controllers which recommend the 

optimal action for each trip. For the second run of simulation, the exact same vehicles were 

used, which follow the exact same routes on the same road network, in order to estimate the 

impact of the recommendation. The proposed actions of each vehicle were introduced as a 

modification of the car-following model’s parameter in the route file. The adoption of this 

approach enabled hands-on implementation of the recommendation process with direct 

control over the outcomes. 

In this case as well, 10 replications with the same seed values as before, were performed to 

ensure the robustness of the results. Findings revealed that in one hour of simulation 57% of 

the demand was served on average, while the corresponding percentage of served vehicles 

was reduced by 1% compared to the initial conditions. 

Impact assessment  

Impact assessment of the proposed system is performed using microsimulation and by 

following a before-after approach. Specifically, for both simulation cycles the Key Performance 

Indicators of traffic, safety and environmental conditions were estimated, and comparatively 

assessed so that to quantify the overall impact of adopting personalized driving 

recommendations which improve each individual’s driving behavior. The KPIs used in the 

analysis for each network’s aspect are presented in Table VII. 

Table VII. Key Performance Indicators for each network’s aspect 

Traffic Safety Environment 

Served demand Total conflicts 
Cumulative amount of emissions 

(CO2, CO, PMx, NOx) 

MFDs Total rear-end conflicts Emissions per vehicle 

Travel times Conflicts per vehicle  

The estimation of traffic-related KPIs was dependent on the outputs of the simulation, which 

included the number of inserted and served vehicles, as well as edge-based information 

regarding the three fundamental elements of traffic flow theory (flow, speed and density). 

Instead of using aggregated measures of the fundamental variables, the Macroscopic 

Fundamental Diagrams (MFDs) were constructed and significant outcomes were drawn 

regarding the differences in the performance of the network before and after the application 

of the recommendation system. The estimation of the harmful air pollutants is based on the 

emissions’ model already integrated into SUMO, the PHEMlight model. PHEMlight is a 

simplified version of PHEM (Passenger car and Heavy-duty Emission Model), a complete 

vehicle emissions model developed in Europe since 1999. PHEM is based on extensive 

emission measurements on vehicles such as passenger cars, light duty vehicles and urban 

buses. The approximation of the conflicts that constitute an indicator for road safety is based 

on the SSAM tool, which computes a number of surrogate measures of safety for each conflict 

(crossings, rear-ends, lane changes) that is identified in the trajectory data and then computes 

summaries (mean, max, etc.) of each surrogate measure.  



 

 

Results: Driving recommendations 

The two versions of the trained DDPG algorithm were used to produce driving 

recommendations with respect to two categories of drivers; typical drivers who exhibit a 

moderate average behavior (SADRA I) and unsafe drivers who interchange their behavior 

among various unsafe driving habits (SADRA II). The recommendations are in the form of 

driving alterations that refer to the optimal driving actions that the specific driver can adopt 

in order to improve their driving based on their current behavior.  

A comparison between the outputs of the two controllers revealed that both of them are 

trained to generate recommendations that move drivers closer to the average safe behavior 

of a typical driver, which has an average acceleration equal to 1.137 m/s2 and a maximum 

acceleration equal to 2.503 m/s2. Based on the indicative samples of the table below (Table 

VIII), the mean recommended average acceleration was estimated 1.145 m/s2, while the mean 

value of the proposed maximum accelerations was 2.507 m/s2 respectively. It can therefore be 

concluded that a universal application of the proposed recommendation system would lead 

to the harmonization of the acceleration profiles for the entire fleet of vehicles. 
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Figure III provides some indicative examples of the recommendations produced by the 

two controllers given the same input (first state). Findings revealed that although the 

recommendations of the controller concerning unsafe drivers (SADRA II) lead to 

significantly lower average accelerations for the next trip (next state) compared to the 

previous trip (initial state), they maintain a significant distance upwards for the 

respective recommendations produced from the typical drivers’ RL controller (SADRA 

I). Nevertheless, it should be noticed that both the controllers lead to a smoother 

acceleration profile for the entire traffic. 

 
Figure III. Comparison of the new state’s average acceleration as it emerged from the Typical 

and the Unsafe RL controllers. 

Results: Simulation and Impact 

The quantification of the impact of applying the proposed recommendation system 

and in consequence, of the adoption of an improved driving behavior by all drivers is 

of great importance both for researchers as well as practitioners and can lead to 

significant findings regarding the usefulness of improving individual driving behavior. 

The assessment of the recommendation system is performed by utilizing specific Key 

Performance Indicators that correspond to three areas of interest: traffic, safety and 

emissions. Each of the simulation rounds was done in 10 replications to enhance the 

validity and robustness of the results. In total, the trained SADRA I controller was used 

to produce recommendations for 43% of the vehicles, while the rest of the vehicles 

followed the recommendations produced by SADRA II. 

All replications of the same simulation round present mutual results which are slightly 

reduced after the application of the recommendation system. On average, 2.9% less 

vehicles were served based on the results of the second round of the simulation. 

However, results of the statistical hypothesis test t-test indicated that there are no 

significant differences between the means of the served vehicles before and after the 

recommendations in 95% confidence interval. Α greater investigation of the traffic flow 

properties together with aggregated metrics of driving behavior was conducted to 



 

 

further quantify the impact on the other dimensions of the road network as well. The 

application of the personalized recommendation system had a substantial impact on 

the maximum acceleration of the vehicles, as shown in Figure IV. When all vehicles 

followed the suggestions generated by the two RL controllers, the mean value of the 

maximum acceleration was somewhat increased from 2.83 m/s2 to 2.96 m/s2, mostly 

because the majority of the vehicles who adopted a very small maximum acceleration, 

which was far lower from the corresponding acceleration of the “moderate/typical” 

behavior, they were suggested to slightly increase their acceleration. However, the 

condensation of the interquartile range is evident after the recommendations, which 

indicates the harmonization of the acceleration profiles of all vehicles in the simulation. 

Finally, the maximum value of the observed maximum accelerations remained at the 

same level of 3.94 m/s2 after the application of the proposed system.  

 
Figure IV. Boxplot of maximum acceleration before and after recommendation 

The differences observed in the magnitude of the average speed are minimal, since in 

both situations the vehicles adopt an average speed of around 25 km/h, while the 

maximum average speed that is observed is approximately 55 km/h.  

Alterations on the speed of vehicles resulted on changes of the rest traffic flows 

properties, namely flow and density. Microscopic fundamental diagrams were 

calculated to provide a thorough graphical representation of these variables’ relations 

for the initial conditions as well as the conditions emerged after the recommendations. 

All three fundamental diagrams (Figures V – VII) demonstrate the relationships 

between traffic flow properties, namely mean vehicle flow, mean density and mean 

speed, as they emerged from the simulation based on aggregated measurements of 

all edges for the 10 replications. Results indicate that the implementation of self-aware 

driving suggestions although it leads to safer and less aggressive driving behavior for 

each individual, it does not improve the performance of the road network. More 

specifically, self-improvement is evident from the lower mean density values which 



 

 

indicates that vehicles keep greater distances from the leading vehicles. Additionally, 

lower speeds are also observed after the adaptation of the recommended accelerations 

with the difference from the initial conditions being more significant in the case of 

saturated network flow (Figure V).  

 
Figure V. Fundamental diagram of speed-density before and after driving recommendations, 

based on simulation results 

Individual driving safety is augmented, yet the impact on traffic conditions is not 

similarly positive. The vehicles that move at lower speeds and with a lower density 

worsen traffic flow conditions, since fewer vehicles are served per time unit compared 

to the initial conditions. Nonetheless, this decrement of mean flow may be considered 

acceptable if assessed in conjunction with the positive effects on driving safety. 

However, based on the findings of this research, it can no way be concluded that the 

improvement of personal driving behavior is associated with a significant improvement 

in traffic conditions and therefore, the imposition of soft policy measures, such raising 

self-awareness with respect to individual driving safety and performance, it cannot be 

considered as a key measure for traffic management. 

The fundamental diagram of flow-density seems to depict a uniformity between the 

initial and the final conditions, although some minor differences are observed with 

respect to the absolute value of capacity flow (Figure VI). Specifically, for the value of 

critical density, which was estimated 33.1 veh/km, the corresponding values of traffic 

flow are 360 veh/h and 358 veh/h for the initial conditions and after the 

recommendations respectively. 



 

 

 
Figure VI. Fundamental diagram of flow-density before and after driving recommendations, 

based on simulation results 

The flow-speed diagram is used to determine the speed at which the optimum flow 

occurs. For the initial conditions of the road network, the optimum flow occurs when 

vehicles move with 26.1 km/h, while the corresponding speed after the 

recommendation is reduced 3.4% with its absolute value estimated 25.2 km/h (Figure 

VII).  

 
Figure VII. Fundamental diagram of flow-speed before and after driving recommendations, based 

on simulation results 

Except for the performance of the network, another key performance indicator is safety. 

The assessment of the applied recommendations with respect to safety was performed 



 

 

by calculating the number of conflicts occurred between the vehicles during the 

simulation. Table IX presents the number of conflicts that were observed for the entire 

traffic before and after the recommendation. There are three types of conflicts that can 

be identified from vehicles’ trajectories, which are crossings, rear-ends and lane 

changes. Here, a special focus on rear-ends is given since the proposed 

recommendations only affect the car-following behavior of each driver.  

Table IX. Safety performance indicators in Athens Network before and after applying driving 
recommendations 

 Initial conditions After recommendation [% 

difference] 

Vehicles served 

(in one hour of simulation) 

23,990  

(27.88% of demand) 

23,302  

(27.08% of demand) 

Total number of conflicts 2.86 conflicts/vehicle 2.75 conflicts/vehicle [-4.2%] 

Rear - ends 2.01 rear-ends/vehicle 1.90 rear-ends/vehicle [-5.5%] 

A reduction of 4.2% of the total number of conflicts was observed when vehicles 

followed the corresponding driving recommendations, while the corresponding 

percentage of elimination for the rear-end conflicts is 5.5%. Although these 

percentages may not seem very high, the absolute number of conflicts that was 

calculated after the recommendation is significantly reduced by approximately 6,000 

conflicts for the one hour of simulation. Rear-ends constitute about 33% of the total 

number of conflicts, which indicates that each driver gets involved in all different kind 

of conflicts during driving. 

Some indicative results on the impact of the proposed recommendation system on 

emissions is provided. The corresponding Key Performance Indicator is the level of 

emissions for all different kind of air pollutants, namely Carbon Dioxide (CO2), Carbon 

Monoxide (CO), Particulate Matter (PMx) and Oxides of Nitrogen (NOx). A significant 

reduction in all categories of emissions is observed compared to the initial conditions 

of the network, as shown in Table X. Findings revealed that the homogenization of 

acceleration profile for the entire traffic has led to a slightly reduced emissions per 

vehicle. Specifically, the reduction in all categories of emissions is estimated as follows: 

2.5% in CO2, 0.3% in CO, 1.3% in PMx and 3.3% in NOx. It should be noted that this 

improvement in the environmental conditions is very important since the proposed 

recommendation system had a positive impact on emissions despite the fact that the 

controller was not trained towards this direction.  

Table X. Difference in vehicle emissions before and after applying driving recommendations 
Emissions Initial conditions After recommendation [% difference] 

CO2 0.704 kg/vehicle 0.686 kg/vehicle [-2.5%] 

CO 0.027 kg/vehicle 0.026 kg/vehicle [-0.3%] 

PMx 0.0133 g/vehicle 0.0131 g/vehicle [-1.3%] 

NOx 0.296 g/vehicle 0.287 g/vehicle [-3.3%] 



 

 

Conclusions and main contributions 

The main findings of the dissertation can be summarized in the following points: 

• A two-level clustering approach can provide great insights on the 

characteristics that govern aggressiveness during driving and can be further 

exploited to distinguish safe from unsafe driving patterns.  

• Six distinct driving profiles are able to describe the overall driving behavior that 

someone performs during their trip. 

• Τhere are two categories of drivers according to the average behavior of each 

driver resulting from how they drove in all their trips. In the first category drivers 

usually drive in a typical manner while in the second category drivers perform 

a number of unsafe driving actions or drive in an aggressive manner in the 

majority of their trips. 

• The Actor-critic approach from the family of reinforcement learning algorithms 

can be exploited to find the best possible driving action for each dividual driver 

given the way they drove in their previous trip. 

• When a controller provides driving recommendations to a fleet of vehicles, the 

acceleration profile of the entire fleet is harmonized on a value which is close 

enough to the acceleration decisions of a typical – safe driver. 

• The application of a personalized recommendation system to a city’s road 

network does not have a significant impact on traffic conditions. 

• When each driver improves their own behavior, road safety is enhanced on the 

network. Specifically, critical conflicts between vehicles are significantly reduced 

after the application of the proposed system. 

• The level of emissions for all different kinds of air pollutants is reduced which 

indicates that harmonization of the accelerations for the entire traffic can have 

an important positive impact on the environmental conditions. 

Concluding, it should be noted that the deterioration of traffic may be considered 

acceptable if one takes into account the compensation through the benefits of 

adopting smoother driving behavior in road safety and emissions. To this end, policy 

makers and researchers should not neglect the real impact on all network’s dimensions 

when planning traffic management strategies and applying soft and hard policy 

measures. 

The present doctoral dissertation offers significant innovative contributions in five 

areas:  

1. It makes use of an innovative naturalistic driving dataset. A great volume of 

data was available with high temporal resolution from real driving, enriched 

with a variety of factors that describe driving behavior, environment and other 

external attributes for each trip. 



 

 

2. It proposes a methodological framework to extract driving profiles straight 

from the data, which describe the entire range of driving behavior. A data-

driven approach is followed to classify critical driving patterns that appear 

during a trip by exploiting k-means clustering as being the most appropriate 

tool for this purpose. 

3. It develops novel Reinforcement Learning algorithms to solve a real-world 

problem, this of assisting driving behavior. A deep Reinforcement Learning 

algorithm was chosen as the most suitable tool to learn the optimal policy and 

suggest the appropriate action that leads to the best possible driving behavior 

for each individual driver. 

4. It proposes a methodology which is capable of recognizing individual driving 

preferences and produce personalized driving actions to each driver. 

Specifically, an inclusive methodological framework is implemented which 

incorporates tools and methods that first recognize driving behavior of every 

user, then assigns every user to the corresponding RL controller version based 

on their overall behavior and finally produces personalized driving actions that 

mitigate aggressiveness and riskiness of driving.  

5. It evaluates the large-scale network effects of implementing a personalized 

driving recommendation system on three areas of interest using specific KPIs, 

precisely on traffic, safety and emissions. Impact assessment of the proposed 

recommendation system is performed using a real-world scenario that of the 

Athens’ Road network through microsimulation and by applying a before-after 

methodology to compare the values of the KPIs before and after the application 

of the system. 

Limitations, impact and future research 

As any other data-driven approach, this research as well, relied on some limitations 

with regards to problem setup and adaptation. Firstly, some limitations emerged from 

the need to match the RL output with the simulation properties. More specifically, one 

of the two components of the recommended action, the average acceleration of each 

driver, could not be imported into the microsimulation car-following model, which is 

parametrized by the acceleration ability of vehicles and therefore only the maximum 

acceleration is adopted within the simulation. Nevertheless, due to the nature of the 

phenomenon of driving, all parameters describing how a driver chooses to drive over 

a trip are inextricably linked with each other and therefore, the neglection of the 

average acceleration was not expected to have a significant impact over the results of 

the simulation. Besides car-following behavior, a driver during their trips takes actions 

regarding lane change, priority concession and other decisions concerning interactions 

with other road users. However, in this research the focus was explicitly on the car-

following behavior as the ultimate goal was to create a user-centric system that looks 

only at the driver and does not require any external information from the road network 



 

 

in order to be trained and implemented. Thus, the proposed actions refer on the way 

the driver drives along the road, namely the way they choose to hit the acceleration 

pedal, which depends only on the personal preferences and perceptions of the driver. 

The lack of information about the environment can be considered as a limitation of the 

developed system, since its transformation into a context-aware system would give 

other perspectives both to the system itself and to the possibilities of its use as a traffic 

management tool.  

An extension of the above limitation is the fact that since the system ignores the state 

of the environment it cannot operate real-time. In other words, the proposed 

methodology is not able to produce recommendations real-time, namely during a trip. 

Instead, an offline system is developed which suggests alterations on driving behavior 

in a sequence of trips for each driver. The integration of external information into the 

system would allow, at least conceptually, the real-time provision of driving 

recommendations.  

Lastly, another limitation, which applies to all data driven approaches, is the 

generalization and transferability of the developed model and the corresponding 

outcomes. In most cases it is unclear whether the sample used to train the model is 

representative of the entire population and also whether its characteristics are similar 

to those of a different population. In this work, a big naturalistic driving dataset is used 

to develop the RL models which includes trips performed by a great number of drivers, 

nevertheless, it cannot be said that the results can be generalized and spatially 

transferred to another road network. 

Besides the limitations described above, the outputs produced within this dissertation 

may have a significant impact on several aspects of both research (R), technology (T) 

and policy-making (P). Future research can benefit and significantly evolve by further 

examining the conclusions drawn with regards to the following points: 

o (R) Aggressiveness does not necessarily constitute an unsafe driving habit and 

can be detected either as an individual behavior or in combination with other 

unsafe behaviors.  

o (R) Reinforcement learning algorithms can be implemented in real-world 

problems and specifically, the DDPG algorithm can learn how to make human-

like decisions on complex and high-dimensional environments. 

o (R & T) The identified human driving profiles can provide great insights for 

human-like autonomous driving. 

Technological advancements can be achieved in case the proposed recommendation 

system is incorporated in already developed software, such as insurance telematics 

apps and ADAS. Such system can be revolutionized, become more human friendly and 

adopt a more personalized way of supporting human decision making.  



 

 

Moreover, policy makers could take advantage of the results of this dissertation to 

redesign soft policy measures and redefine the role of drivers in the current traffic 

management strategies, since in this work it was shown that the improvement of 

driving behavior on an individual level can have significant impact on road safety and 

emissions, but not a noteworthy impact on traffic conditions.  

Finally, it can be understood that findings of this work can have far reaching 

implications for future research. Although this research provides significant 

contributions on driving behavior analysis, there is still much room in the exploration 

of driving behavior dynamics and thus, further research should be conducted in that 

direction involving enriched driving datasets and additional driving behaviors and 

parameters (e.g., cornering, tasks that cause distraction except from mobile usage).  

Moreover, the dedicated study of the dynamic evolution of driving behavior is also very 

important to provide answers to the question of how much and how rapidly driving 

profiles are altering over time. Another direction of future research concerns the 

recommendation system, which should investigate the way the produced 

recommendation should be passed to the driver in order for them to be understood 

by the user and then to be accepted by him. Furthermore, the identification of the 

required specifications that will enable the real-time operation of the system could also 

be a part of future research. Towards this direction, the most significant future research 

objective would be the modification of the proposed system in a way that it becomes 

context-aware, meaning that the system can interact with environment in which the 

agent takes decisions and have a full view of its dynamics and alterations. In this way, 

the proposed system could be implemented in real-time, and additionally it could also 

act as a traffic management tool which uses driving behavior as a key force of 

enhancing traffic efficiency. 

 

 


